TemporianTransformer#

class TemporianTransformer(function, compile=False)[source]#

将 Temporian 函数应用于输入时间序列。

这个转换器将 Temporian [1] 函数应用于输入时间序列。

sktime 内部表示与 Temporian EventSet [2] 之间的相互转换由转换器自动处理。

参数:
functionCallable[[temporian.EventSet], temporian.EventSet]

要应用于输入时间序列的 Temporian 函数。该函数必须接收并返回一个 Temporian EventSet,并且可以对输入应用任意数量的 Temporian 运算符。

compilebool, default=False

如果为 True,函数将使用 Temporian 的 @tp.compile [3] 装饰器编译,这可以通过优化操作图带来显著的加速。

属性:
is_fitted

是否已调用 fit

参考资料

示例

>>> from sktime.datasets import load_airline
>>> from sktime.transformations.series.temporian import TemporianTransformer
>>> import temporian as tp  
>>>
>>> def function(evset):  
...     return evset.simple_moving_average(tp.duration.days(3 * 365))          
>>> transformer = TemporianTransformer(function=function)  
>>> X = load_airline()  
>>> X_averaged = transformer.fit_transform(X)  

方法

check_is_fitted([method_name])

检查估计器是否已拟合。

clone()

获取具有相同超参数和配置的对象克隆。

clone_tags(estimator[, tag_names])

从另一个对象克隆标签作为动态覆盖。

create_test_instance([parameter_set])

使用第一个测试参数集构造类的实例。

create_test_instances_and_names([parameter_set])

创建所有测试实例列表及其名称列表。

fit(X[, y])

将转换器拟合到 X,可选地拟合到 y。

fit_transform(X[, y])

拟合数据,然后进行转换。

get_class_tag(tag_name[, tag_value_default])

从类中获取类标签值,带有来自父类的标签级别继承。

get_class_tags()

从类中获取类标签,带有来自父类的标签级别继承。

get_config()

获取自身的配置标志。

get_fitted_params([deep])

获取拟合参数。

get_param_defaults()

获取对象的参数默认值。

get_param_names([sort])

获取对象的参数名称。

get_params([deep])

获取此对象的参数值字典。

get_tag(tag_name[, tag_value_default, ...])

从实例获取标签值,带有标签级别继承和覆盖。

get_tags()

从实例获取标签,带有标签级别继承和覆盖。

get_test_params([parameter_set])

返回估计器的测试参数设置。

inverse_transform(X[, y])

逆转换 X 并返回逆转换后的版本。

is_composite()

检查对象是否由其他 BaseObject 组成。

load_from_path(serial)

从文件位置加载对象。

load_from_serial(serial)

从序列化内存容器加载对象。

reset()

将对象重置为干净的初始化后状态。

save([path, serialization_format])

将序列化的自身保存到字节类对象或 (.zip) 文件。

set_config(**config_dict)

将配置标志设置为给定值。

set_params(**params)

设置此对象的参数。

set_random_state([random_state, deep, ...])

为自身设置 random_state 伪随机种子参数。

set_tags(**tag_dict)

将实例级标签覆盖设置为给定值。

transform(X[, y])

转换 X 并返回转换后的版本。

update(X[, y, update_params])

使用 X(可选 y)更新转换器。

classmethod get_test_params(parameter_set='default')[source]#

返回估计器的测试参数设置。

参数:
parameter_setstr, default=”default”

要返回的测试参数集的名称,用于测试。如果未为某个值定义特殊参数,则将返回 “default” 集。当前没有为转换器保留的值。

返回:
paramsdict or list of dict, default = {}

用于创建类测试实例的参数。每个字典都是构造“有趣”测试实例的参数,例如,MyClass(**params)MyClass(**params[i]) 创建一个有效的测试实例。create_test_instance 使用 params 中的第一个(或唯一一个)字典。

check_is_fitted(method_name=None)[source]#

检查估计器是否已拟合。

检查 _is_fitted 属性是否存在且为 Trueis_fitted 属性应在调用对象的 fit 方法时设置为 True

如果不是,则引发 NotFittedError

参数:
method_namestr, optional

调用此方法的名称。如果提供,错误消息将包含此信息。

引发:
NotFittedError

如果估计器尚未拟合。

clone()[source]#

获取具有相同超参数和配置的对象克隆。

克隆是没有共享引用的不同对象,处于初始化后状态。此函数等同于返回 sklearn.cloneself

等同于构造一个 type(self) 的新实例,参数与 self 相同,即 type(self)(**self.get_params(deep=False))

如果在 self 上设置了配置,克隆也将具有与原始对象相同的配置,等同于调用 cloned_self.set_config(**self.get_config())

值上也等同于调用 self.reset,不同之处在于 clone 返回一个新对象,而不是像 reset 那样改变 self

引发:
如果克隆不符合规范,由于 __init__ 有问题,则会引发 RuntimeError。
clone_tags(estimator, tag_names=None)[source]#

从另一个对象克隆标签作为动态覆盖。

每个与 scikit-base 兼容的对象都有一个标签字典。标签可用于存储关于对象的元数据,或控制对象的行为。

标签是特定于实例 self 的键值对,它们是对象构建后不会改变的静态标志。

clone_tags 从另一个对象 estimator 设置动态标签覆盖。

clone_tags 方法应仅在对象构造期间或通过 __init__ 构造后立即在对象的 __init__ 方法中调用。

动态标签被设置为 estimator 中标签的值,名称由 tag_names 指定。

tag_names 的默认设置是将 estimator 中的所有标签写入 self

当前的标签值可以通过 get_tagsget_tag 进行检查。

参数:
estimator:class:BaseObject 或派生类的实例
tag_namesstr or list of str, default = None

要克隆的标签名称。默认值 (None) 克隆 estimator 中的所有标签。

返回:
self

self 的引用。

classmethod create_test_instance(parameter_set='default')[source]#

使用第一个测试参数集构造类的实例。

参数:
parameter_setstr, default=”default”

要返回的测试参数集的名称,用于测试。如果未为某个值定义特殊参数,则将返回 “default” 集。

返回:
instance具有默认参数的类实例
classmethod create_test_instances_and_names(parameter_set='default')[source]#

创建所有测试实例列表及其名称列表。

参数:
parameter_setstr, default=”default”

要返回的测试参数集的名称,用于测试。如果未为某个值定义特殊参数,则将返回 “default” 集。

返回:
objscls 实例列表

第 i 个实例是 cls(**cls.get_test_params()[i])

names字符串列表,与 objs 长度相同

第 i 个元素是测试中 obj 第 i 个实例的名称。如果实例多于一个,命名约定为 {cls.__name__}-{i},否则为 {cls.__name__}

fit(X, y=None)[source]#

将转换器拟合到 X,可选地拟合到 y。

状态改变

将状态更改为“已拟合”。

写入自身

  • 设置以“_”结尾的拟合模型属性,拟合属性可通过 get_fitted_params 检查。

  • self.is_fitted 标志设置为 True

  • 如果 self.get_tag("remember_data")True,则将 X 记忆为 self._X,并强制转换为 self.get_tag("X_inner_mtype")

参数:
Xsktime 兼容数据容器格式的时间序列

用于拟合转换的数据。

sktime 中的个体数据格式称为 mtype 规范,每个 mtype 实现了一个抽象的 scitype

  • Series scitype = 个体时间序列。pd.DataFrame, pd.Series, 或 np.ndarray (1D 或 2D)

  • Panel scitype = 时间序列集合。pd.DataFrame 带有 2 级行 MultiIndex (instance, time)3D np.ndarray (instance, variable, time)list 类型的 Series pd.DataFrame

  • Hierarchical scitype = 分层时间序列集合。pd.DataFrame 带有 3 级或更多行 MultiIndex (hierarchy_1, ..., hierarchy_n, time)

有关数据格式的更多详细信息,请参阅 mtype 词汇表。有关用法,请参阅转换器教程 examples/03_transformers.ipynb

y可选,sktime 兼容数据格式的数据,默认=None

附加数据,例如用于转换的标签。某些转换器需要此数据,如果 self.get_tag("requires_y")True,则必须在 fit 中传递,不是可选的。有关所需格式,请参阅类 docstring 了解详细信息。

返回:
self估计器的已拟合实例
fit_transform(X, y=None)[source]#

拟合数据,然后进行转换。

将转换器拟合到 X 和 y,并返回 X 的转换版本。

状态改变

将状态更改为“已拟合”。

写入自身: _is_fitted : 标志设置为 True。 _X : X,如果 remember_data 标签为 True,则是 X 的强制复制

如果可能,可能会强制转换为内部类型或通过引用转换为 update_data 兼容类型

模型属性(以“_”结尾):取决于估计器

参数:
Xsktime 兼容数据容器格式的时间序列

用于拟合转换的数据,以及要转换的数据。

sktime 中的个体数据格式称为 mtype 规范,每个 mtype 实现了一个抽象的 scitype

  • Series scitype = 个体时间序列。pd.DataFrame, pd.Series, 或 np.ndarray (1D 或 2D)

  • Panel scitype = 时间序列集合。pd.DataFrame 带有 2 级行 MultiIndex (instance, time)3D np.ndarray (instance, variable, time)list 类型的 Series pd.DataFrame

  • Hierarchical scitype = 分层时间序列集合。pd.DataFrame 带有 3 级或更多行 MultiIndex (hierarchy_1, ..., hierarchy_n, time)

有关数据格式的更多详细信息,请参阅 mtype 词汇表。有关用法,请参阅转换器教程 examples/03_transformers.ipynb

y可选,sktime 兼容数据格式的数据,默认=None

附加数据,例如用于转换的标签。某些转换器需要此数据,如果 self.get_tag("requires_y")True,则必须在 fit 中传递,不是可选的。有关所需格式,请参阅类 docstring 了解详细信息。

返回:
X 的转换版本
类型取决于 X 的类型和 scitype:transform-output 标签
X | tf-output | 返回类型 |

|----------|————–|------------------------| | Series | Primitives | pd.DataFrame (1 行) | | Panel | Primitives | pd.DataFrame | | Series | Series | Series | | Panel | Series | Panel | | Series | Panel | Panel |

返回中的实例对应于 X 中的实例
表中未列出的组合目前不支持
具体说明,含示例
  • 如果 XSeries (例如,pd.DataFrame)

并且 transform-outputSeries,则返回是相同 mtype 的单个 Series。示例:单序列去趋势

  • 如果 XPanel (例如,pd-multiindex) 并且 transform-output

Series,则返回是一个 Panel,其实例数量与 X 相同(转换器应用于每个输入 Series 实例)。示例:Panel 中的所有序列都被单独去趋势

  • 如果 XSeriesPanel 并且 transform-output

Primitives,则返回是一个 pd.DataFrame,其行数与 X 中的实例数相同。示例:返回的第 i 行具有第 i 个序列的均值和方差

  • 如果 XSeries 并且 transform-outputPanel

则返回是一个类型为 pd-multiindexPanel 对象。示例:输出的第 i 个实例是在 X 上运行的第 i 个窗口。

classmethod get_class_tag(tag_name, tag_value_default=None)[source]#

从类中获取类标签值,带有来自父类的标签级别继承。

每个与 scikit-base 兼容的对象都有一个标签字典,用于存储关于对象的元数据。

get_class_tag 方法是一个类方法,仅考虑类级别标签值和覆盖来检索标签的值。

它从对象中返回名称为 tag_name 的标签值,考虑标签覆盖,优先级降序如下:

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按继承顺序。

不考虑通过 set_tagsclone_tags 在实例上设置的动态标签覆盖。

要检索可能带有实例覆盖的标签值,请改用 get_tag 方法。

参数:
tag_namestr

标签值的名称。

tag_value_default任意类型

如果找不到标签,则为默认/备用值。

返回:
tag_value

selftag_name 标签的值。如果未找到,则返回 tag_value_default

classmethod get_class_tags()[source]#

从类中获取类标签,带有来自父类的标签级别继承。

每个与 scikit-base 兼容的对象都有一个标签字典。标签可用于存储关于对象的元数据,或控制对象的行为。

标签是特定于实例 self 的键值对,它们是对象构建后不会改变的静态标志。

get_class_tags 方法是一个类方法,仅考虑类级别标签值和覆盖来检索标签的值。

它返回一个字典,其键是类或其任何父类中设置的 _tags 任何属性的键。

值是对应的标签值,覆盖优先级降序如下:

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按继承顺序。

实例可以根据超参数覆盖这些标签。

要检索可能带有实例覆盖的标签,请改用 get_tags 方法。

不考虑通过 set_tagsclone_tags 在实例上设置的动态标签覆盖。

要包含来自动态标签的覆盖,请使用 get_tags

collected_tagsdict

标签名称 : 标签值对的字典。通过嵌套继承从 _tags 类属性收集。不会被通过 set_tagsclone_tags 设置的动态标签覆盖。

get_config()[source]#

获取自身的配置标志。

配置是 self 的键值对,通常用作控制行为的临时标志。

get_config 返回动态配置,它们会覆盖默认配置。

默认配置在类或其父类的类属性 _config 中设置,并被通过 set_config 设置的动态配置覆盖。

配置在 clonereset 调用中保留。

返回:
config_dictdict

配置名称 : 配置值对的字典。通过嵌套继承从 _config 类属性收集,然后从 _onfig_dynamic 对象属性收集任何覆盖和新标签。

get_fitted_params(deep=True)[source]#

获取拟合参数。

所需状态

要求状态为“已拟合”。

参数:
deepbool, default=True

是否返回组件的拟合参数。

  • 如果为 True,将返回此对象的参数名称 : 值字典,包括可拟合组件(= BaseEstimator 值参数)的拟合参数。

  • 如果为 False,将返回此对象的参数名称 : 值字典,但不包括组件的拟合参数。

返回:
fitted_params带有字符串值键的字典

拟合参数字典,包含 paramname : paramvalue 键值对

  • 总是:此对象的所有拟合参数,如通过 get_param_names 获取的值,是此对象该键的拟合参数值

  • 如果 deep=True,还包含组件参数的键/值对。组件参数以 [componentname]__[paramname] 索引,componentname 的所有参数都以 paramname 及其值出现

  • 如果 deep=True,还包含任意级别的组件递归,例如 [componentname]__[componentcomponentname]__[paramname]

classmethod get_param_defaults()[source]#

获取对象的参数默认值。

返回:
default_dict: dict[str, Any]

键是 cls 中所有在 __init__ 中定义了默认值的参数。值是默认值,如 __init__ 中所定义。

classmethod get_param_names(sort=True)[source]#

获取对象的参数名称。

参数:
sortbool, default=True

是否按字母顺序排序返回参数名称 (True),或按它们在类 __init__ 中出现的顺序 (False)。

返回:
param_names: list[str]

cls 的参数名称列表。如果 sort=False,则按它们在类 __init__ 中出现的相同顺序。如果 sort=True,则按字母顺序排序。

get_params(deep=True)[source]#

获取此对象的参数值字典。

参数:
deepbool, default=True

是否返回组件的参数。

  • 如果为 True,将返回此对象的参数名称 : 值 dict,包括组件(= BaseObject 值参数)的参数。

  • 如果为 False,将返回此对象的参数名称 : 值 dict,但不包括组件的参数。

返回:
params带有字符串值键的字典

参数字典,包含 paramname : paramvalue 键值对

  • 总是:此对象的所有参数,如通过 get_param_names 获取的值,是此对象该键的参数值;值总是与构造时传递的值相同

  • 如果 deep=True,还包含组件参数的键/值对。组件参数以 [componentname]__[paramname] 索引,componentname 的所有参数都以 paramname 及其值出现

  • 如果 deep=True,还包含任意级别的组件递归,例如 [componentname]__[componentcomponentname]__[paramname]

get_tag(tag_name, tag_value_default=None, raise_error=True)[source]#

从实例获取标签值,带有标签级别继承和覆盖。

每个与 scikit-base 兼容的对象都有一个标签字典。标签可用于存储关于对象的元数据,或控制对象的行为。

标签是特定于实例 self 的键值对,它们是对象构建后不会改变的静态标志。

get_tag 方法从实例中检索名称为 tag_name 的单个标签值,考虑标签覆盖,优先级降序如下:

  1. 通过 set_tagsclone_tags 在实例上设置的标签,

在实例构建时。

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按继承顺序。

参数:
tag_namestr

要检索的标签名称

tag_value_default任意类型,可选;默认=None

如果找不到标签,则为默认/备用值

raise_errorbool

当找不到标签时是否引发 ValueError

返回:
tag_valueAny

selftag_name 标签的值。如果未找到,则在 raise_error 为 True 时引发错误,否则返回 tag_value_default

引发:
ValueError,如果 raise_errorTrue

如果 tag_name 不在 self.get_tags().keys() 中,则引发 ValueError

get_tags()[source]#

从实例获取标签,带有标签级别继承和覆盖。

每个与 scikit-base 兼容的对象都有一个标签字典。标签可用于存储关于对象的元数据,或控制对象的行为。

标签是特定于实例 self 的键值对,它们是对象构建后不会改变的静态标志。

get_tags 方法返回一个标签字典,其键是类或其任何父类中设置的 _tags 任何属性的键,或通过 set_tagsclone_tags 设置的标签。

值是对应的标签值,覆盖优先级降序如下:

  1. 通过 set_tagsclone_tags 在实例上设置的标签,

在实例构建时。

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按继承顺序。

返回:
collected_tagsdict

标签名称 : 标签值对的字典。通过嵌套继承从 _tags 类属性收集,然后从 _tags_dynamic 对象属性收集任何覆盖和新标签。

inverse_transform(X, y=None)[source]#

逆转换 X 并返回逆转换后的版本。

目前假定只有带有以下标签的转换器

“scitype:transform-input”=”Series”, “scitype:transform-output”=”Series”,

具有 inverse_transform 方法。

所需状态

要求状态为“已拟合”。

访问自身

  • 以“_”结尾的拟合模型属性。

  • self.is_fitted, 必须为 True

参数:
Xsktime 兼容数据容器格式的时间序列

用于拟合转换的数据。

sktime 中的个体数据格式称为 mtype 规范,每个 mtype 实现了一个抽象的 scitype

  • Series scitype = 个体时间序列。pd.DataFrame, pd.Series, 或 np.ndarray (1D 或 2D)

  • Panel scitype = 时间序列集合。pd.DataFrame 带有 2 级行 MultiIndex (instance, time)3D np.ndarray (instance, variable, time)list 类型的 Series pd.DataFrame

  • Hierarchical scitype = 分层时间序列集合。pd.DataFrame 带有 3 级或更多行 MultiIndex (hierarchy_1, ..., hierarchy_n, time)

有关数据格式的更多详细信息,请参阅 mtype 词汇表。有关用法,请参阅转换器教程 examples/03_transformers.ipynb

y可选,sktime 兼容数据格式的数据,默认=None

附加数据,例如用于转换的标签。某些转换器需要此数据,详细信息请参阅类 docstring。

返回:
X 的逆转换版本

与 X 类型相同,并符合 mtype 格式规范

is_composite()[source]#

检查对象是否由其他 BaseObject 组成。

复合对象是包含其他对象作为参数的对象。在实例上调用,因为这可能因实例而异。

返回:
composite: bool

对象的任何参数值是否为 BaseObject 的后代实例。

property is_fitted[source]#

是否已调用 fit

检查对象的 _is_fitted` 属性,该属性应在对象构建期间初始化为 ``False,并在调用对象的 fit 方法时设置为 True。

返回:
bool

估计器是否已 fit

classmethod load_from_path(serial)[source]#

从文件位置加载对象。

参数:
serialresult of ZipFile(path).open(“object)
返回:
反序列化的自身,结果输出在 path,来自 cls.save(path) 的输出
classmethod load_from_serial(serial)[source]#

从序列化内存容器加载对象。

参数:
serialcls.save(None) 输出的第一个元素
返回:
反序列化的自身,结果输出 serial,来自 cls.save(None) 的输出
reset()[source]#

将对象重置为干净的初始化后状态。

结果是将 self 设置为其构造函数调用后直接拥有的状态,带有相同的超参数。通过 set_config 设置的配置值也会保留。

reset 调用删除任何对象属性,除了

  • hyper-parameters = __init__ 的参数,这些参数被写入 self,例如 self.paramname,其中 paramname__init__ 的一个参数

  • 包含双下划线的对象属性,即字符串“__”。例如,名为“__myattr”的属性会被保留。

  • 配置属性,配置将保持不变。也就是说,在 reset 调用前后,get_config 的结果是相同的。

类方法、对象方法和类属性也不受影响。

clone 等效,不同之处在于 reset 会修改 self 本身而不是返回一个新的对象。

调用 self.reset() 后,self 的值和状态将与通过构造函数调用``type(self)(**self.get_params(deep=False))``获得的对象的相同。

返回:
self

类实例将被重置到干净的初始化后状态,但会保留当前的超参数值。

save(path=None, serialization_format='pickle')[source]#

将序列化的自身保存到字节类对象或 (.zip) 文件。

行为:如果 path 为 None,则返回一个内存中的序列化 self;如果 path 是文件位置,则将 self 存储在该位置作为 zip 文件。

保存的文件是 zip 文件,包含以下内容:_metadata - 包含 self 的类,即 type(self);_obj - 序列化的 self。此类使用默认的序列化格式 (pickle)。

参数:
pathNone 或文件位置 (str 或 Path)

如果为 None,self 将被保存到一个内存对象中;如果为文件位置,self 将被保存到该文件位置。如果

  • path=”estimator”,则将在当前工作目录创建 zip 文件 estimator.zip

  • path=”/home/stored/estimator”,则 zip 文件 estimator.zip 将被

存储在 /home/stored/ 中。

serialization_format: str,默认值 = “pickle”

用于序列化的模块。可用选项包括“pickle”和“cloudpickle”。请注意,非默认格式可能需要安装其他软依赖项。

返回:
如果 path 为 None - 内存中的序列化 self
如果 path 是文件位置 - 包含文件引用的 ZipFile
set_config(**config_dict)[source]#

将配置标志设置为给定值。

参数:
config_dictdict

配置名称 : 配置值 对的字典。有效的配置、值及其含义如下所列

displaystr,“diagram”(默认)或“text”

jupyter 内核如何显示 self 的实例

  • “diagram” = html 框图表示

  • “text” = 字符串打印输出

print_changed_onlybool,默认值=True

打印 self 时是仅列出与默认值不同的 self 参数 (True),还是列出所有参数名称和值 (False)。不嵌套,即仅影响 self,不影响组件估计器。

warningsstr,“on”(默认)或“off”

是否引发警告,仅影响来自 sktime 的警告

  • “on” = 将引发来自 sktime 的警告

  • “off” = 不会引发来自 sktime 的警告

backend:parallelstr,可选,默认值=”None”

广播/向量化时用于并行化的后端,以下之一:

  • “None”:按顺序执行循环,简单的列表推导

  • “loky”、“multiprocessing”和“threading”:使用 joblib.Parallel

  • “joblib”:自定义和第三方 joblib 后端,例如 spark

  • “dask”:使用 dask,需要环境中包含 dask

  • “ray”:使用 ray,需要环境中包含 ray

backend:parallel:paramsdict,可选,默认值={}(不传递参数)

作为配置传递给并行化后端的附加参数。有效键取决于 backend:parallel 的值

  • “None”:无附加参数,backend_params 被忽略

  • “loky”、“multiprocessing”和“threading”:默认 `joblib` 后端;可在此处传递 joblib.Parallel 的任何有效键,例如 n_jobs,但 `backend` 除外,该参数由 backend 直接控制。如果未传递 n_jobs,它将默认为 `-1`,其他参数将默认为 `joblib` 的默认值。

  • “joblib”:自定义和第三方 `joblib` 后端,例如 `spark`。可在此处传递 joblib.Parallel 的任何有效键,例如 n_jobs;在此情况下,`backend` 必须作为 backend_params 的一个键传递。如果未传递 n_jobs,它将默认为 `-1`,其他参数将默认为 `joblib` 的默认值。

  • “dask”:可传递 dask.compute 的任何有效键,例如 scheduler

  • “ray”:可传递以下键

    • “ray_remote_args”:ray.init 的有效键的字典

    • “shutdown_ray”:布尔值,默认值=True;False 会阻止 ray

      在并行化后关闭。

    • “logger_name”:字符串,默认值=”ray”;要使用的日志记录器名称。

    • “mute_warnings”:布尔值,默认值=False;如果为 True,则抑制警告

input_conversionstr,“on”(默认)、“off”或有效的 mtype 字符串之一

控制输入检查和转换,用于 _fit_transform_inverse_transform_update

  • "on" - 执行输入检查和转换

  • "off" - 在将数据传递给内部方法之前不执行输入检查和转换

  • 有效 mtype 字符串 - 输入被假定为指定的 mtype,执行转换但不执行检查

output_conversionstr,“on”、“off”、有效的 mtype 字符串之一

控制 _transform_inverse_transform 的输出转换

  • "on" - 如果 input_conversion 为“on”,则执行输出转换

  • "off" - 直接返回 _transform_inverse_transform 的输出

  • 有效 mtype 字符串 - 输出被转换为指定的 mtype

返回:
self对 self 的引用。

注意

更改对象状态,将 config_dict 中的配置复制到 self._config_dynamic。

set_params(**params)[source]#

设置此对象的参数。

此方法适用于简单的 skbase 对象以及复合对象。参数键字符串 <component>__<parameter> 可用于复合对象(即包含其他对象的对象),以访问组件 <component> 中的 <parameter>。如果引用清晰无歧义(例如,没有两个组件的参数名称相同),也可以使用不带 <component>__ 的字符串 <parameter>

参数:
**paramsdict

BaseObject 参数,键必须是 <component>__<parameter> 字符串。如果 __ 后缀在 get_params 键中唯一,则可以作为完整字符串的别名。

返回:
self对 self 的引用(参数设置后)
set_random_state(random_state=None, deep=True, self_policy='copy')[source]#

为自身设置 random_state 伪随机种子参数。

通过 self.get_params 找到名为 random_state 的参数,并通过 set_params 将它们设置为从 random_state 导出的整数。这些整数通过 sample_dependent_seed 从链式哈希中采样,并保证种子随机生成器的伪随机独立性。

应用于 self 中的 random_state 参数(取决于 self_policy),以及仅当 deep=True 时应用于剩余的组件对象。

注意:即使 self 没有 random_state,或者没有组件具有 random_state 参数,也会调用 set_params。因此,set_random_state 将重置任何 scikit-base 对象,即使那些没有 random_state 参数的对象也会被重置。

参数:
random_stateint、RandomState 实例或 None,默认值=None

控制随机整数生成的伪随机数生成器。传递整数可确保在多次函数调用中输出可复现。

deepbool, default=True

是否在 skbase 对象值参数(即组件估计器)中设置随机状态。

  • 如果为 False,将仅设置 selfrandom_state 参数(如果存在)。

  • 如果为 True,也将设置组件对象中的 random_state 参数。

self_policystr,{“copy”、“keep”、“new”} 之一,默认值=”copy”
  • “copy”:将 self.random_state 设置为输入的 random_state

  • “keep”:self.random_state 保持不变

  • “new”:将 self.random_state 设置为新的随机状态,

由输入的 random_state 派生而来,并且通常与其不同

返回:
self对 self 的引用
set_tags(**tag_dict)[source]#

将实例级标签覆盖设置为给定值。

每个与 scikit-base 兼容的对象都有一个标签字典,用于存储关于对象的元数据。

标签是特定于实例 self 的键值对,它们是对象构造后不会更改的静态标志。它们可用于元数据检查或控制对象的行为。

set_tags 将动态标签覆盖设置为 tag_dict 中指定的值,其中键是标签名称,字典值是要将标签设置成的值。

set_tags 方法应仅在对象的 __init__ 方法中调用,即在构造期间,或通过 __init__ 构造后立即调用。

当前的标签值可以通过 get_tagsget_tag 进行检查。

参数:
**tag_dictdict

标签名称 : 标签值 对的字典。

返回:
Self

对 self 的引用。

transform(X, y=None)[source]#

转换 X 并返回转换后的版本。

所需状态

要求状态为“已拟合”。

访问自身

  • 以“_”结尾的拟合模型属性。

  • self.is_fitted, 必须为 True

参数:
Xsktime 兼容数据容器格式的时间序列

要转换的数据。

sktime 中的个体数据格式称为 mtype 规范,每个 mtype 实现了一个抽象的 scitype

  • Series scitype = 个体时间序列。pd.DataFrame, pd.Series, 或 np.ndarray (1D 或 2D)

  • Panel scitype = 时间序列集合。pd.DataFrame 带有 2 级行 MultiIndex (instance, time)3D np.ndarray (instance, variable, time)list 类型的 Series pd.DataFrame

  • Hierarchical scitype = 分层时间序列集合。pd.DataFrame 带有 3 级或更多行 MultiIndex (hierarchy_1, ..., hierarchy_n, time)

有关数据格式的更多详细信息,请参阅 mtype 词汇表。有关用法,请参阅转换器教程 examples/03_transformers.ipynb

y可选,sktime 兼容数据格式的数据,默认=None

附加数据,例如用于转换的标签。某些转换器需要此数据,详细信息请参阅类 docstring。

返回:
X 的转换版本
类型取决于 X 的类型和 scitype:transform-output 标签

转换

X

-输出

返回类型

Series

原语

pd.DataFrame (1-row)

Panel

原语

pd.DataFrame

Series

Series

Series

Panel

Series

Panel

Series

Panel

Panel

返回中的实例对应于 X 中的实例
表中未列出的组合目前不支持
具体说明,含示例
  • 如果 XSeries (例如,pd.DataFrame)

并且 transform-outputSeries,则返回是相同 mtype 的单个 Series。示例:单序列去趋势

  • 如果 XPanel (例如,pd-multiindex) 并且 transform-output

Series,则返回是一个 Panel,其实例数量与 X 相同(转换器应用于每个输入 Series 实例)。示例:Panel 中的所有序列都被单独去趋势

  • 如果 XSeriesPanel 并且 transform-output

Primitives,则返回是一个 pd.DataFrame,其行数与 X 中的实例数相同。示例:返回的第 i 行具有第 i 个序列的均值和方差

  • 如果 XSeries 并且 transform-outputPanel

则返回是一个类型为 pd-multiindexPanel 对象。示例:输出的第 i 个实例是在 X 上运行的第 i 个窗口。

update(X, y=None, update_params=True)[source]#

使用 X(可选 y)更新转换器。

所需状态

要求状态为“已拟合”。

访问自身

  • 以“_”结尾的拟合模型属性。

  • self.is_fitted, 必须为 True

写入自身

  • 以“_”结尾的拟合模型属性。

  • 如果 remember_data 标签为 True,则通过 update_dataX 中的值更新到 self._X

参数:
Xsktime 兼容数据容器格式的时间序列

用于更新转换的数据

sktime 中的个体数据格式称为 mtype 规范,每个 mtype 实现了一个抽象的 scitype

  • Series scitype = 个体时间序列。pd.DataFrame, pd.Series, 或 np.ndarray (1D 或 2D)

  • Panel scitype = 时间序列集合。pd.DataFrame 带有 2 级行 MultiIndex (instance, time)3D np.ndarray (instance, variable, time)list 类型的 Series pd.DataFrame

  • Hierarchical scitype = 分层时间序列集合。pd.DataFrame 带有 3 级或更多行 MultiIndex (hierarchy_1, ..., hierarchy_n, time)

有关数据格式的更多详细信息,请参阅 mtype 词汇表。有关用法,请参阅转换器教程 examples/03_transformers.ipynb

y可选,sktime 兼容数据格式的数据,默认=None

附加数据,例如用于转换的标签。某些转换器需要此数据,详细信息请参阅类 docstring。

返回:
self估计器的已拟合实例