DtwDistTslearn#

class DtwDistTslearn(global_constraint=None, sakoe_chiba_radius=None, itakura_max_slope=None, n_jobs=None, verbose=0)[source]#

动态时间规整距离,来自 tslearn。

直接接口:tslearn.metrics.cdist_dtw

参数:
global_constraint{“itakura”, “sakoe_chiba”} 或 None (默认: None)

全局约束,用于限制 DTW 的允许路径。

sakoe_chiba_radiusint 或 None (默认: None)

用于 Sakoe-Chiba 带全局约束的半径。如果为 None 且 global_constraint 设置为 "sakoe_chiba",则使用半径 1。如果同时设置了 sakoe_chiba_radiusitakura_max_slope,则 global_constraint 用于推断使用两者中的哪个约束。在这种情况下,如果 global_constraint 对应于没有全局约束,则会引发 RuntimeWarning 并未使用全局约束。

itakura_max_slopefloat 或 None (默认: None)

Itakura 平行四边形约束的最大斜率。如果为 None 且 global_constraint 设置为 "itakura",则使用最大斜率 2。如果同时设置了 sakoe_chiba_radiusitakura_max_slope,则 global_constraint 用于推断使用两者中的哪个约束。在这种情况下,如果 global_constraint 对应于没有全局约束,则会引发 RuntimeWarning 并未使用全局约束。

n_jobsint 或 None,可选 (默认=None)

并行运行的作业数。None 表示 1,除非在 joblib.parallel_backend 上下文中。-1 表示使用所有处理器。

verboseint,可选 (默认=0)

冗余级别:如果非零,则打印进度消息。高于 50,输出发送到 stdout。消息频率随冗余级别增加而增加。如果大于 10,则报告所有迭代。

属性:
is_fitted

是否已调用 fit

参考

[1]

H. Sakoe, S. Chiba,“语音识别的动态规划算法优化”,IEEE Transactions on Acoustics, Speech and Signal Processing,第 26(1) 卷,第 43–49 页,1978 年。

方法

__call__(X[, X2])

计算距离/核矩阵,调用简写。

check_is_fitted([method_name])

检查估算器是否已拟合。

clone()

获取具有相同超参数和配置的对象克隆。

clone_tags(estimator[, tag_names])

从另一个对象克隆标签作为动态覆盖。

create_test_instance([parameter_set])

使用第一个测试参数集构造类的实例。

create_test_instances_and_names([parameter_set])

创建所有测试实例列表及其名称列表。

fit([X, X2])

用于接口兼容性的拟合方法(内部无逻辑)。

get_class_tag(tag_name[, tag_value_default])

从类获取类标签值,并从父类继承标签级别。

get_class_tags()

从类获取类标签,并从父类继承标签级别。

get_config()

获取自身的配置标志。

get_fitted_params([deep])

获取拟合参数。

get_param_defaults()

获取对象的参数默认值。

get_param_names([sort])

获取对象的参数名称。

get_params([deep])

获取此对象的参数值字典。

get_tag(tag_name[, tag_value_default, ...])

从实例获取标签值,并带有标签级别继承和覆盖。

get_tags()

从实例获取标签,并带有标签级别继承和覆盖。

get_test_params([parameter_set])

返回估算器的测试参数设置。

is_composite()

检查对象是否由其他 BaseObject 组成。

load_from_path(serial)

从文件位置加载对象。

load_from_serial(serial)

从序列化内存容器加载对象。

重置()

将对象重置为干净的初始化后状态。

save([path, serialization_format])

将序列化后的自身保存到字节类对象或 (.zip) 文件。

set_config(**config_dict)

将配置标志设置为给定值。

set_params(**params)

设置此对象的参数。

set_random_state([random_state, deep, ...])

为自身设置 random_state 伪随机种子参数。

set_tags(**tag_dict)

将实例级别的标签覆盖设置为给定值。

transform(X[, X2])

计算距离/核矩阵。

transform_diag(X)

计算距离/核矩阵的对角线。

类方法 get_test_params(parameter_set='default')[source]#

返回估算器的测试参数设置。

参数:
parameter_setstr, 默认值=”default”

要返回的测试参数集的名称,用于测试。如果某个值没有定义特殊参数,将返回 "default" 集。距离/核变换器目前没有保留值。

返回:
paramsdict 或 list of dict, 默认值 = {}

用于创建类测试实例的参数。每个 dict 都是用于构造“有趣”测试实例的参数,例如 MyClass(**params)MyClass(**params[i]) 创建一个有效的测试实例。create_test_instance 使用 params 中的第一个(或唯一一个)字典。

check_is_fitted(method_name=None)[source]#

检查估算器是否已拟合。

检查 _is_fitted 属性是否存在且为 True。在调用对象的 fit 方法时,应将 is_fitted 属性设置为 True

如果不是,则引发 NotFittedError

参数:
method_namestr, 可选

调用此函数的方法的名称。如果提供,错误消息将包含此信息。

引发:
NotFittedError

如果估计器尚未拟合。

clone()[source]#

获取具有相同超参数和配置的对象克隆。

克隆是一个没有共享引用的不同对象,处于初始化后状态。此函数等效于返回 selfsklearn.clone

等效于构造 type(self) 的新实例,使用 self 的参数,即 type(self)(**self.get_params(deep=False))

如果在 self 上设置了配置,则克隆对象也将具有与原始对象相同的配置,等效于调用 cloned_self.set_config(**self.get_config())

在值上也等效于调用 self.reset,但 clone 返回一个新对象,而 reset 会修改 self

引发:
如果克隆对象不符合规范,由于 __init__ 错误,则会引发 RuntimeError。
clone_tags(estimator, tag_names=None)[source]#

从另一个对象克隆标签作为动态覆盖。

每个 scikit-base 兼容对象都有一个标签字典。标签可用于存储对象的元数据或控制对象的行为。

标签是特定于实例 self 的键值对,它们是静态标志,对象构造后不会更改。

clone_tags 从另一个对象 estimator 设置动态标签覆盖。

clone_tags 方法只能在对象的 __init__ 方法中、构造期间或通过 __init__ 构造后直接调用。

动态标签设置为 estimator 中标签的值,名称由 tag_names 指定。

tag_names 的默认设置将 estimator 中的所有标签写入 self

当前标签值可以通过 get_tagsget_tag 查看。

参数:
estimator:class:BaseObject 或派生类的实例
tag_namesstr 或 list of str, 默认值 = None

要克隆的标签名称。默认值 (None) 克隆 estimator 中的所有标签。

返回:
self

self 的引用。

类方法 create_test_instance(parameter_set='default')[source]#

使用第一个测试参数集构造类的实例。

参数:
parameter_setstr, 默认值=”default”

要返回的测试参数集的名称,用于测试。如果某个值没有定义特殊参数,将返回 “default” 集。

返回:
instance具有默认参数的类实例
类方法 create_test_instances_and_names(parameter_set='default')[source]#

创建所有测试实例列表及其名称列表。

参数:
parameter_setstr, 默认值=”default”

要返回的测试参数集的名称,用于测试。如果某个值没有定义特殊参数,将返回 “default” 集。

返回:
objscls 实例列表

第 i 个实例是 cls(**cls.get_test_params()[i])

namesstr 列表,与 objs 长度相同

第 i 个元素是测试中第 i 个 obj 实例的名称。如果实例多于一个,命名约定为 {cls.__name__}-{i},否则为 {cls.__name__}

fit(X=None, X2=None)[source]#

用于接口兼容性的拟合方法(内部无逻辑)。

类方法 get_class_tag(tag_name, tag_value_default=None)[source]#

从类获取类标签值,并从父类继承标签级别。

每个 scikit-base 兼容对象都有一个标签字典,用于存储对象的元数据。

get_class_tag 方法是一个类方法,仅考虑类级别的标签值和覆盖来检索标签的值。

它从对象返回名称为 tag_name 的标签值,考虑标签覆盖,优先级降序排列如下:

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按继承顺序。

不考虑通过 set_tagsclone_tags 在实例上设置的动态标签覆盖。

要检索可能具有实例覆盖的标签值,请使用 get_tag 方法。

参数:
tag_namestr

标签值的名称。

tag_value_default任意类型

如果未找到标签,则使用默认值/回退值。

返回:
tag_value

selftag_name 标签的值。如果未找到,则返回 tag_value_default

类方法 get_class_tags()[source]#

从类获取类标签,并从父类继承标签级别。

每个 scikit-base 兼容对象都有一个标签字典。标签可用于存储对象的元数据或控制对象的行为。

标签是特定于实例 self 的键值对,它们是静态标志,对象构造后不会更改。

get_class_tags 方法是一个类方法,仅考虑类级别的标签值和覆盖来检索标签的值。

它返回一个字典,其键是类或其任何父类中设置的 _tags 的任何属性的键。

值是相应的标签值,覆盖优先级降序排列如下:

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按继承顺序。

实例可以根据超参数覆盖这些标签。

要检索可能具有实例覆盖的标签,请使用 get_tags 方法。

不考虑通过 set_tagsclone_tags 在实例上设置的动态标签覆盖。

要包含来自动态标签的覆盖,请使用 get_tags

collected_tagsdict

标签名称:标签值对的字典。通过嵌套继承从 _tags 类属性收集。不会被 set_tagsclone_tags 设置的动态标签覆盖。

get_config()[source]#

获取自身的配置标志。

配置是 self 的键值对,通常用作控制行为的瞬时标志。

get_config 返回动态配置,它们会覆盖默认配置。

默认配置在类或其父类的类属性 _config 中设置,并被通过 set_config 设置的动态配置覆盖。

配置在 clonereset 调用后保留。

返回:
config_dictdict

配置名称:配置值对的字典。通过嵌套继承从 _config 类属性收集,然后从 _onfig_dynamic 对象属性收集任何覆盖和新标签。

get_fitted_params(deep=True)[source]#

获取拟合参数。

所需状态

需要状态为“已拟合”。

参数:
deepbool, 默认值=True

是否返回组件的已拟合参数。

  • 如果为 True,将返回此对象的参数名称:值字典,包括可拟合组件(= BaseEstimator 类型参数)的已拟合参数。

  • 如果为 False,将返回此对象的参数名称:值字典,但不包括组件的已拟合参数。

返回:
fitted_params具有 str 类型键的 dict

已拟合参数的字典,paramname : paramvalue 键值对包括

  • 总是:此对象的所有已拟合参数,通过 get_param_names 获得,值是该键对应的此对象的已拟合参数值

  • 如果 deep=True,还包含组件参数的键/值对,组件的参数索引为 [componentname]__[paramname]componentname 的所有参数都以 paramname 及其值出现

  • 如果 deep=True,还包含任意级别的组件递归,例如 [componentname]__[componentcomponentname]__[paramname] 等。

类方法 get_param_defaults()[source]#

获取对象的参数默认值。

返回:
default_dict: dict[str, Any]

键是 cls 中在 __init__ 中定义了默认值的所有参数。值是默认值,如 __init__ 中所定义。

类方法 get_param_names(sort=True)[source]#

获取对象的参数名称。

参数:
sortbool, 默认值=True

是按字母顺序(True)还是按它们在类 __init__ 中出现的顺序(False)返回参数名称。

返回:
param_names: list[str]

cls 的参数名称列表。如果 sort=False,则按它们在类 __init__ 中出现的相同顺序排列。如果 sort=True,则按字母顺序排列。

get_params(deep=True)[source]#

获取此对象的参数值字典。

参数:
deepbool, 默认值=True

是否返回组件的参数。

  • 如果为 True,将返回此对象的参数名称:值 dict,包括组件(= BaseObject 类型参数)的参数。

  • 如果为 False,将返回此对象的参数名称:值 dict,但不包括组件的参数。

返回:
params具有 str 类型键的 dict

参数字典,paramname : paramvalue 键值对包括

  • 总是:此对象的所有参数,通过 get_param_names 获得,值是该键对应的此对象的参数值,值始终与构造时传递的值相同。

  • 如果 deep=True,还包含组件参数的键/值对,组件的参数索引为 [componentname]__[paramname]componentname 的所有参数都以 paramname 及其值出现

  • 如果 deep=True,还包含任意级别的组件递归,例如 [componentname]__[componentcomponentname]__[paramname] 等。

get_tag(tag_name, tag_value_default=None, raise_error=True)[source]#

从实例获取标签值,并带有标签级别继承和覆盖。

每个 scikit-base 兼容对象都有一个标签字典。标签可用于存储对象的元数据或控制对象的行为。

标签是特定于实例 self 的键值对,它们是静态标志,对象构造后不会更改。

get_tag 方法从实例中检索名称为 tag_name 的单个标签的值,考虑标签覆盖,优先级降序排列如下:

  1. 通过 set_tagsclone_tags 在实例上设置的标签,

在实例构造时。

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按继承顺序。

参数:
tag_namestr

要检索的标签名称

tag_value_default任意类型, 可选; 默认值=None

如果未找到标签,则使用默认值/回退值。

raise_errorbool

未找到标签时是否引发 ValueError

返回:
tag_valueAny

selftag_name 标签的值。如果未找到,且 raise_error 为 True,则引发错误,否则返回 tag_value_default

引发:
ValueError,如果 raise_errorTrue

tag_name 不在 self.get_tags().keys() 中时,会引发 ValueError

get_tags()[source]#

从实例获取标签,并带有标签级别继承和覆盖。

每个 scikit-base 兼容对象都有一个标签字典。标签可用于存储对象的元数据或控制对象的行为。

标签是特定于实例 self 的键值对,它们是静态标志,对象构造后不会更改。

get_tags 方法返回一个标签字典,其键是类或其任何父类中设置的 _tags 的任何属性的键,或通过 set_tagsclone_tags 设置的标签。

值是相应的标签值,覆盖优先级降序排列如下:

  1. 通过 set_tagsclone_tags 在实例上设置的标签,

在实例构造时。

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按继承顺序。

返回:
collected_tagsdict

标签名称:标签值对的字典。通过嵌套继承从 _tags 类属性收集,然后从 _tags_dynamic 对象属性收集任何覆盖和新标签。

is_composite()[source]#

检查对象是否由其他 BaseObject 组成。

复合对象是一个包含其他对象作为参数的对象。在实例上调用,因为这可能因实例而异。

返回:
composite: bool

对象是否具有任何参数,其值是 BaseObject 的派生实例。

属性 is_fitted[source]#

是否已调用 fit

检查对象的 _is_fitted 属性,该属性应在对象构造期间初始化为 False,并在调用对象的 fit 方法时设置为 True。

返回:
bool

估计器是否已 拟合

类方法 load_from_path(serial)[source]#

从文件位置加载对象。

参数:
serialZipFile(path).open(“object”) 的结果
返回:
反序列化自身,生成位于 path 的输出,即 cls.save(path) 的结果。
类方法 load_from_serial(serial)[source]#

从序列化内存容器加载对象。

参数:
serialcls.save(None) 输出的第一个元素
返回:
反序列化自身,生成输出 serial,即 cls.save(None) 的结果。
reset()[source]#

将对象重置为干净的初始化后状态。

结果是将 self 设置为构造函数调用后立即拥有的状态,并具有相同的超参数。通过 set_config 设置的配置值也会保留。

reset 调用会删除除以下各项之外的任何对象属性:

  • 超参数 = 写入 self__init__ 的参数,例如 self.paramname,其中 paramname__init__ 的参数。

  • 包含双下划线的对象属性,即字符串“__”。例如,名为“__myattr”的属性会被保留。

  • 配置属性,配置不变地保留。也就是说,reset 前后 get_config 的结果是相等的。

类和对象方法以及类属性也不受影响。

等效于 clone,但 reset 会修改 self,而不是返回一个新对象。

在调用 self.reset() 后,self 在值和状态上与构造函数调用 ``type(self)(**self.get_params(deep=False))`` 后获得的对象相等。

返回:
self

类实例重置为干净的初始化后状态,但保留当前的超参数值。

save(path=None, serialization_format='pickle')[source]#

将序列化后的自身保存到字节类对象或 (.zip) 文件。

行为:如果 path 为 None,则返回一个内存中的序列化自身;如果 path 是文件位置,则将自身在该位置存储为 zip 文件。

保存的文件是包含以下内容的 zip 文件:_metadata - 包含自身的类,即 type(self);_obj - 序列化的自身。此类使用默认序列化 (pickle)。

参数:
pathNone 或 文件位置 (str 或 Path)

如果为 None,则将自身保存到内存对象;如果是文件位置,则将自身保存到该文件位置。如果

  • path=”estimator”,则会在当前工作目录 (cwd) 创建一个 zip 文件 estimator.zip

  • path=”/home/stored/estimator”,则会在

/home/stored/ 中存储一个 zip 文件 estimator.zip

serialization_format: str, 默认值 = “pickle”

用于序列化的模块。可用选项有“pickle”和“cloudpickle”。请注意,非默认格式可能需要安装其他软依赖项。

返回:
如果 path 为 None - 内存中的序列化自身
如果 path 是文件位置 - ZipFile,引用该文件
set_config(**config_dict)[source]#

将配置标志设置为给定值。

参数:
config_dictdict

配置名称:配置值对的字典。有效的配置、值及其含义如下所示:

displaystr, “diagram” (默认), 或 “text”

jupyter 内核如何显示自身实例

  • “diagram” = html 框图表示

  • “text” = 字符串输出

print_changed_onlybool, 默认值=True

打印自身时是否只列出自参数中与默认值不同的参数 (False),或者列出所有参数名称和值 (False)。不嵌套,即只影响自身,不影响组件估计器。

warningsstr, “on” (默认), 或 “off”

是否发出警告,仅影响来自 sktime 的警告。

  • “on” = 将发出来自 sktime 的警告

  • “off” = 将不发出来自 sktime 的警告

backend:parallelstr, 可选, 默认值=”None”

广播/矢量化时用于并行处理的后端,以下之一:

  • “None”: 顺序执行循环,简单的列表推导

  • “loky”, “multiprocessing” 和 “threading”: 使用 joblib.Parallel

  • “joblib”: 自定义和第三方 joblib 后端,例如 spark

  • “dask”: 使用 dask,需要在环境中安装 dask

  • “ray”: 使用 ray,需要在环境中安装 ray

backend:parallel:paramsdict, 可选, 默认值={} (未传递参数)

作为配置传递给并行处理后端的附加参数。有效的键取决于 backend:parallel 的值。

  • “None”: 没有附加参数,backend_params 被忽略。

  • “loky”, “multiprocessing” 和 “threading”: 默认的 joblib 后端,此处可以传递 joblib.Parallel 的任何有效键,例如 n_jobs,但 backend 除外,它由 backend 直接控制。如果未传递 n_jobs,它将默认为 -1,其他参数将默认为 joblib 的默认值。

  • “joblib”: 自定义和第三方 joblib 后端,例如 spark。此处可以传递 joblib.Parallel 的任何有效键,例如 n_jobs,在这种情况下,必须将 backend 作为 backend_params 的键传递。如果未传递 n_jobs,它将默认为 -1,其他参数将默认为 joblib 的默认值。

  • “dask”: 可以传递 dask.compute 的任何有效键,例如 scheduler

  • “ray”: 可以传递以下键

    • “ray_remote_args”: ray.init 的有效键字典

    • “shutdown_ray”: bool, 默认值=True; False 可防止 ray 在并行化后

      关闭。

    • “logger_name”: str, 默认值=”ray”; 要使用的日志记录器名称。

    • “mute_warnings”: bool, 默认值=False; 如果为 True,则抑制警告。

返回:
self对自身的引用。

注意

更改对象状态,将 config_dict 中的配置复制到 self._config_dynamic。

set_params(**params)[source]#

设置此对象的参数。

此方法适用于简单的 skbase 对象以及复合对象。参数键字符串 <component>__<parameter> 可用于复合对象(即包含其他对象的对象),以访问组件 <component> 中的 <parameter>。如果引用明确,例如没有两个组件参数名称相同,也可以使用不带 <component>__ 的字符串 <parameter>

参数:
paramsdict

BaseObject 参数,键必须是 <component>__<parameter> 字符串。__ 后缀可以作为完整字符串的别名,如果它在 get_params 键中是唯一的。

返回:
self对自身的引用(设置参数后)
set_random_state(random_state=None, deep=True, self_policy='copy')[source]#

为自身设置 random_state 伪随机种子参数。

通过 self.get_params 查找名为 random_state 的参数,并通过 set_params 将它们设置为从 random_state 派生的整数。这些整数通过 sample_dependent_seed 从链式哈希中采样,并保证种子随机生成器的伪随机独立性。

适用于 self 中的 random_state 参数(取决于 self_policy),并且仅当 deep=True 时才适用于剩余组件对象。

注意:即使 self 没有 random_state 参数,或者任何组件都没有 random_state 参数,也会调用 set_params。因此,set_random_state 将重置任何 scikit-base 对象,即使是没有 random_state 参数的对象。

参数:
random_stateint, RandomState 实例或 None, 默认值=None

控制随机整数生成的伪随机数生成器。传递 int 可在多次函数调用中获得可复现的输出。

deepbool, 默认值=True

是否在 skbase 对象值参数(即组件估计器)中设置随机状态。

  • 如果为 False,则只设置 selfrandom_state 参数(如果存在)。

  • 如果为 True,也将设置组件对象中的 random_state 参数。

self_policystr, 以下之一 {“copy”, “keep”, “new”}, 默认值=”copy”
  • “copy” : self.random_state 设置为输入 random_state

  • “keep” : self.random_state 保持不变

  • “new” : self.random_state 设置为新的随机状态,

从输入 random_state 派生,通常与其不同。

返回:
self对自身的引用
set_tags(**tag_dict)[source]#

将实例级别的标签覆盖设置为给定值。

每个 scikit-base 兼容对象都有一个标签字典,用于存储对象的元数据。

标签是特定于实例 self 的键值对,它们是静态标志,对象构造后不会更改。它们可用于元数据检查或控制对象的行为。

set_tags 将动态标签覆盖设置为 tag_dict 中指定的值,其中键是标签名称,dict 值是要将标签设置为的值。

set_tags 方法只能在对象的 __init__ 方法中、构造期间或通过 __init__ 构造后直接调用。

当前标签值可以通过 get_tagsget_tag 查看。

参数:
tag_dictdict

标签名称:标签值对的字典。

返回:
Self

对自身的引用。

transform(X, X2=None)[source]#

计算距离/核矩阵。

行为:返回成对距离/核矩阵

X 和 X2 中样本之间的距离/核矩阵(如果未传递 X2,则等于 X)

参数:
XSeries 或 Panel,任何支持的 mtype,共 n 个实例
要变换的数据,Python 类型如下:

Series: pd.Series, pd.DataFrame, 或 np.ndarray (1D 或 2D) Panel: 具有 2 级 MultiIndex 的 pd.DataFrame, pd.DataFrame 列表,

嵌套的 pd.DataFrame, 或 long/wide 格式的 pd.DataFrame

受 sktime mtype 格式规范限制,详情请参见

examples/AA_datatypes_and_datasets.ipynb

X2Series 或 Panel,任何支持的 mtype,共 m 个实例

可选,默认值: X = X2

要变换的数据,Python 类型如下:

Series: pd.Series, pd.DataFrame, 或 np.ndarray (1D 或 2D) Panel: 具有 2 级 MultiIndex 的 pd.DataFrame, pd.DataFrame 列表,

嵌套的 pd.DataFrame, 或 long/wide 格式的 pd.DataFrame

受 sktime mtype 格式规范限制,详情请参见

examples/AA_datatypes_and_datasets.ipynb

X 和 X2 不必具有相同的 mtype

返回:
distmat: 形状为 [n, m] 的 np.array

(i,j) 条目包含 X[i] 和 X2[j] 之间的距离/核

transform_diag(X)[source]#

计算距离/核矩阵的对角线。

行为:返回 X 中样本的距离/核矩阵的对角线。

参数:
XSeries 或 Panel,任何支持的 mtype,共 n 个实例
要变换的数据,Python 类型如下:

Series: pd.Series, pd.DataFrame, 或 np.ndarray (1D 或 2D) Panel: 具有 2 级 MultiIndex 的 pd.DataFrame, pd.DataFrame 列表,

嵌套的 pd.DataFrame, 或 long/wide 格式的 pd.DataFrame

受 sktime mtype 格式规范限制,详情请参见

examples/AA_datatypes_and_datasets.ipynb

返回:
diag: 形状为 [n] 的 np.array

第 i 个条目包含 X[i] 和 X[i] 之间的距离/核