MrSQM#
- class MrSQM(strat='RS', features_per_rep=500, selection_per_rep=2000, nsax=1, nsfa=0, custom_config=None, random_state=None, sfa_norm=True)[source]#
MrSQM = 多表示序列挖掘器 (Multiple Representations Sequence Miner)。
MrSQMClassifier 在 sktime 中的直接接口。注意:mrsqm 本身是 Copyleft 许可 (GPL3)。此接口为宽松许可 (BSD3)。
MrSQM 是一种利用时间序列符号表示的高效时间序列分类器。MrSQM 实现了四种不同的特征选择策略 = (R, S, RS, SR),可以快速从时间序列数据的多种符号表示中选择子序列。
- 参数:
- stratstr,取值范围为 ‘R’、’S’、’SR’ 或 ‘RS’ 之一,默认为 “RS”
特征选择策略。默认为 ‘RS’。R 和 S 是单阶段过滤器,而 RS 和 SR 是两阶段过滤器。
- features_per_repint,默认为 500
每种表示所选特征的(最大)数量。
- selection_per_repint,默认为 2000
每种表示所选候选特征的(最大)数量。仅应用于两阶段策略(RS 和 SR),否则忽略。
- nsaxint,默认为 1
通过 sax 转换产生的表示数量。
- nsfaint,默认为 0
通过 sfa 转换产生的表示数量。
- custom_configdict,默认为 None
符号转换的自定义参数。
- random_stateint,默认为 None。
分类器的随机种子。
- sfa_normbool,默认为 True。
是否应用时间序列归一化(标准化)。
- 属性:
is_fitted
是否已调用
fit
方法。
参考文献
[1]Thach Le Nguyen and Georgiana Ifrim. “MrSQM: Fast Time Series Classification with Symbolic Representations and Efficient Sequence Mining” arXiv 预印本 arXiv:2109.01036 (2021)。
[2]Thach Le Nguyen and Georgiana Ifrim. “Fast Time Series Classification with Random Symbolic Subsequences”. AALTD 2022。
方法
check_is_fitted
([method_name])检查估计器是否已拟合。
clone
()获取具有相同超参数和配置的对象的克隆。
clone_tags
(estimator[, tag_names])将另一个对象的标签克隆为动态覆盖。
create_test_instance
([parameter_set])使用第一个测试参数集构造类的一个实例。
create_test_instances_and_names
([parameter_set])创建所有测试实例的列表及其名称列表。
fit
(X, y)将时间序列分类器拟合到训练数据。
fit_predict
(X, y[, cv, change_state])拟合并预测 X 中序列的标签。
fit_predict_proba
(X, y[, cv, change_state])拟合并预测 X 中序列的标签概率。
get_class_tag
(tag_name[, tag_value_default])从类中获取类标签值,包含从父类继承的标签级别。
从类中获取类标签,包含从父类继承的标签级别。
获取自身的配置标志。
get_fitted_params
([deep])获取已拟合参数。
获取对象的默认参数。
get_param_names
([sort])获取对象的参数名称。
get_params
([deep])获取此对象的参数值字典。
get_tag
(tag_name[, tag_value_default, ...])从实例中获取标签值,包含标签级别继承和覆盖。
get_tags
()从实例中获取标签,包含标签级别继承和覆盖。
get_test_params
([parameter_set])返回估计器的测试参数设置。
检查对象是否由其他 BaseObject 组成。
load_from_path
(serial)从文件位置加载对象。
load_from_serial
(serial)从序列化内存容器加载对象。
predict
(X)预测 X 中序列的标签。
预测 X 中序列的标签概率。
reset
()将对象重置为干净的初始化后状态。
save
([path, serialization_format])将序列化的自身保存到字节类对象或到 (.zip) 文件。
score
(X, y)对 X 上的预测标签与真实标签进行评分。
set_config
(**config_dict)将配置标志设置为给定值。
set_params
(**params)设置此对象的参数。
set_random_state
([random_state, deep, ...])为自身设置 random_state 伪随机种子参数。
set_tags
(**tag_dict)将实例级别标签覆盖设置为给定值。
- classmethod get_test_params(parameter_set='default')[source]#
返回估计器的测试参数设置。
- 参数:
- parameter_setstr,默认为 “default”
要返回的测试参数集的名称,用于测试。如果未为某个值定义特殊参数,将返回
"default"
参数集。对于分类器,应提供一组“default”参数用于通用测试,如果通用参数集未生成适合比较的概率,则提供一组“results_comparison”参数用于与先前记录的结果进行比较。
- 返回:
- paramsdict 或 dict 列表,默认为 {}
用于创建类测试实例的参数。每个字典都是构造“有趣”测试实例的参数,即
MyClass(**params)
或MyClass(**params[i])
会创建一个有效的测试实例。create_test_instance
使用params
中的第一个(或唯一的)字典。
- check_is_fitted(method_name=None)[source]#
检查估计器是否已拟合。
检查
_is_fitted
属性是否存在且为True
。is_fitted
属性应在调用对象的fit
方法时设置为True
。如果不是,则引发
NotFittedError
。- 参数:
- method_namestr,可选
调用此方法的函数名称。如果提供,错误消息将包含此信息。
- 引发:
- NotFittedError
如果估计器尚未拟合。
- clone()[source]#
获取具有相同超参数和配置的对象的克隆。
克隆是另一个没有共享引用、处于初始化后状态的对象。此函数等同于返回
sklearn.clone
的self
。等同于构造一个具有
self
参数的新type(self)
实例,即type(self)(**self.get_params(deep=False))
。如果在
self
上设置了配置,克隆也将具有与原始对象相同的配置,等同于调用cloned_self.set_config(**self.get_config())
。在值上也等同于调用
self.reset
,但clone
返回一个新对象,而不是像reset
那样修改self
。- 引发:
- 如果由于
__init__
错误导致克隆不符合要求,则引发 RuntimeError。
- 如果由于
- clone_tags(estimator, tag_names=None)[source]#
将另一个对象的标签克隆为动态覆盖。
每个
scikit-base
兼容对象都包含一个标签字典。标签可用于存储关于对象的元数据,或控制对象的行为。标签是特定于实例
self
的键值对,它们是对象构造后不更改的静态标志。clone_tags
从另一个对象estimator
设置动态标签覆盖。应仅在对象的
__init__
方法中、构造期间或通过__init__
直接在构造后调用clone_tags
方法。动态标签设置为
estimator
中标签的值,名称在tag_names
中指定。tag_names
的默认值将estimator
中的所有标签写入self
。当前标签值可以通过
get_tags
或get_tag
进行检查。- 参数:
- estimator:class:BaseObject 或派生类的实例
- tag_namesstr 或 str 列表,默认为 None
要克隆的标签名称。默认值 (
None
) 克隆estimator
中的所有标签。
- 返回:
- self
对
self
的引用。
- classmethod create_test_instance(parameter_set='default')[source]#
使用第一个测试参数集构造类的一个实例。
- 参数:
- parameter_setstr,默认为 “default”
要返回的测试参数集的名称,用于测试。如果未为某个值定义特殊参数,将返回 “default” 参数集。
- 返回:
- instance具有默认参数的类实例
- classmethod create_test_instances_and_names(parameter_set='default')[source]#
创建所有测试实例的列表及其名称列表。
- 参数:
- parameter_setstr,默认为 “default”
要返回的测试参数集的名称,用于测试。如果未为某个值定义特殊参数,将返回 “default” 参数集。
- 返回:
- objscls 实例列表
第 i 个实例是
cls(**cls.get_test_params()[i])
- namesstr 列表,长度与 objs 相同
第 i 个元素是测试中 obj 的第 i 个实例的名称。如果实例不止一个,命名约定为
{cls.__name__}-{i}
,否则为{cls.__name__}
- fit(X, y)[source]#
将时间序列分类器拟合到训练数据。
- 状态更改
将状态更改为“已拟合” (fitted)。
- 写入自身
将 self.is_fitted 设置为 True。设置以 “_” 结尾的拟合模型属性。
- 参数:
- Xsktime 兼容的时间序列面板数据容器,属于 Panel scitype
用于拟合估计器的时间序列。
可以是
Panel
scitype 的任何 mtype,例如pd-multiindex: pd.DataFrame,列 = 变量,索引 = pd.MultiIndex,第一层 = 实例索引,第二层 = 时间索引
numpy3D: 3D np.array(任意维数,等长序列),形状为 [n_instances, n_dimensions, series_length]
或任何其他支持的
Panel
mtype
mtype 列表请参见
datatypes.SCITYPE_REGISTER
详细规范请参见
examples/AA_datatypes_and_datasets.ipynb
并非所有估计器都支持具有多元或长度不等序列的面板,详情请参见标签参考。
- ysktime 兼容的表格数据容器,属于 Table scitype
1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions],用于拟合的类别标签。第 0 个索引对应于 X 中的实例索引,第 1 个索引(如果适用)对应于 X 中的多输出向量索引。支持的 sktime 类型:np.ndarray (1D, 2D)、pd.Series、pd.DataFrame
- 返回:
- self对自身的引用。
- fit_predict(X, y, cv=None, change_state=True)[source]#
拟合并预测 X 中序列的标签。
生成样本内预测和交叉验证样本外预测的便利方法。
- 如果 change_state=True,则写入自身
将 self.is_fitted 设置为 True。设置以 “_” 结尾的拟合模型属性。
如果 change_state=False,则不更新状态。
- 参数:
- Xsktime 兼容的时间序列面板数据容器,属于 Panel scitype
用于拟合和预测标签的时间序列。
可以是
Panel
scitype 的任何 mtype,例如pd-multiindex: pd.DataFrame,列 = 变量,索引 = pd.MultiIndex,第一层 = 实例索引,第二层 = 时间索引
numpy3D: 3D np.array(任意维数,等长序列),形状为 [n_instances, n_dimensions, series_length]
或任何其他支持的
Panel
mtype
mtype 列表请参见
datatypes.SCITYPE_REGISTER
详细规范请参见
examples/AA_datatypes_and_datasets.ipynb
并非所有估计器都支持具有多元或长度不等序列的面板,详情请参见标签参考。
- ysktime 兼容的表格数据容器,属于 Table scitype
1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions],用于拟合的类别标签。第 0 个索引对应于 X 中的实例索引,第 1 个索引(如果适用)对应于 X 中的多输出向量索引。支持的 sktime 类型:np.ndarray (1D, 2D)、pd.Series、pd.DataFrame
- cvNone、int 或 sklearn 交叉验证对象,可选,默认为 None
None:预测是样本内预测,等同于
fit(X, y).predict(X)
cv:预测等同于
fit(X_train, y_train).predict(X_test)
,其中多个X_train
、y_train
、X_test
从cv
折中获得。返回的y
是所有测试折预测的并集,cv
测试折必须不相交int:等同于
cv=KFold(cv, shuffle=True, random_state=x)
,即 k 折交叉验证样本外预测,其中random_state
x
如果存在则取自self
,否则x=None
- change_statebool,可选(默认为 True)
如果为 False,将不会更改分类器的状态,即 fit/predict 序列使用副本运行,self 不变
如果为 True,将把自身拟合到完整的 X 和 y,最终状态等同于运行 fit(X, y)
- 返回:
- y_predsktime 兼容的表格数据容器,属于 Table scitype
预测的类别标签
1D 可迭代对象,形状为 [n_instances],或 2D 可迭代对象,形状为 [n_instances, n_dimensions]。
第 0 个索引对应于 X 中的实例索引,第 1 个索引(如果适用)对应于 X 中的多输出向量索引。
如果是单变量 (一维),则为 1D np.ndarray;否则,与 fit 中传入的 y 类型相同
- fit_predict_proba(X, y, cv=None, change_state=True)[source]#
拟合并预测 X 中序列的标签概率。
生成样本内预测和交叉验证样本外预测的便利方法。
- 如果 change_state=True,则写入自身
将 self.is_fitted 设置为 True。设置以 “_” 结尾的拟合模型属性。
如果 change_state=False,则不更新状态。
- 参数:
- Xsktime 兼容的时间序列面板数据容器,属于 Panel scitype
用于拟合和预测标签的时间序列。
可以是
Panel
scitype 的任何 mtype,例如pd-multiindex: pd.DataFrame,列 = 变量,索引 = pd.MultiIndex,第一层 = 实例索引,第二层 = 时间索引
numpy3D: 3D np.array(任意维数,等长序列),形状为 [n_instances, n_dimensions, series_length]
或任何其他支持的
Panel
mtype
mtype 列表请参见
datatypes.SCITYPE_REGISTER
详细规范请参见
examples/AA_datatypes_and_datasets.ipynb
并非所有估计器都支持具有多元或长度不等序列的面板,详情请参见标签参考。
- ysktime 兼容的表格数据容器,属于 Table scitype
1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions],用于拟合的类别标签。第 0 个索引对应于 X 中的实例索引,第 1 个索引(如果适用)对应于 X 中的多输出向量索引。支持的 sktime 类型:np.ndarray (1D, 2D)、pd.Series、pd.DataFrame
- cvNone、int 或 sklearn 交叉验证对象,可选,默认为 None
None:预测是样本内预测,等同于
fit(X, y).predict(X)
cv:预测等同于
fit(X_train, y_train).predict(X_test)
,其中多个X_train
、y_train
、X_test
从cv
折中获得。返回的y
是所有测试折预测的并集,cv
测试折必须不相交int:等同于
cv=KFold(cv, shuffle=True, random_state=x)
,即 k 折交叉验证样本外预测,其中random_state
x
如果存在则取自self
,否则x=None
- change_statebool,可选(默认为 True)
如果为 False,将不会更改分类器的状态,即 fit/predict 序列使用副本运行,self 不变
如果为 True,将把自身拟合到完整的 X 和 y,最终状态等同于运行 fit(X, y)
- 返回:
- y_pred2D np.array,类型为 int,形状为 [n_instances, n_classes]
预测的类别标签概率。第 0 个索引对应于 X 中的实例索引,第 1 个索引对应于类别索引,顺序与 self.classes_ 中的相同。条目是预测的类别概率,总和为 1。
- classmethod get_class_tag(tag_name, tag_value_default=None)[source]#
从类中获取类标签值,包含从父类继承的标签级别。
每个
scikit-base
兼容对象都包含一个标签字典,用于存储对象的元数据。get_class_tag
方法是一个类方法,仅考虑类级别标签值和覆盖来检索标签的值。它从对象中返回名称为
tag_name
的标签的值,考虑标签覆盖,优先级从高到低如下在类的
_tags
属性中设置的标签。在父类
_tags
属性中设置的标签,
按继承顺序。
不考虑通过
set_tags
或clone_tags
在实例上设置的动态标签覆盖,这些覆盖定义在实例上。要检索可能包含实例覆盖的标签值,请改用
get_tag
方法。- 参数:
- tag_namestr
标签值的名称。
- tag_value_default任意类型
如果未找到标签,则为默认/回退值。
- 返回:
- tag_value
self
中tag_name
标签的值。如果未找到,则返回tag_value_default
。
- classmethod get_class_tags()[source]#
从类中获取类标签,包含从父类继承的标签级别。
每个
scikit-base
兼容对象都包含一个标签字典。标签可用于存储关于对象的元数据,或控制对象的行为。标签是特定于实例
self
的键值对,它们是对象构造后不更改的静态标志。get_class_tags
方法是一个类方法,仅考虑类级别标签值和覆盖来检索标签的值。它返回一个字典,其键是类或其任何父类中设置的任何
_tags
属性的键。值是相应的标签值,覆盖优先级从高到低如下
在类的
_tags
属性中设置的标签。在父类
_tags
属性中设置的标签,
按继承顺序。
实例可以根据超参数覆盖这些标签。
要检索可能包含实例覆盖的标签,请改用
get_tags
方法。不考虑通过
set_tags
或clone_tags
在实例上设置的动态标签覆盖,这些覆盖定义在实例上。要包含来自动态标签的覆盖,请使用
get_tags
。- collected_tagsdict
标签名称 : 标签值对的字典。通过嵌套继承从
_tags
类属性收集。不被通过set_tags
或clone_tags
设置的动态标签覆盖。
- get_config()[source]#
获取自身的配置标志。
配置是
self
的键值对,通常用作控制行为的瞬时标志。get_config
返回动态配置,这些配置会覆盖默认配置。默认配置在类或其父类的类属性
_config
中设置,并被通过set_config
设置的动态配置覆盖。配置在
clone
或reset
调用下保留。- 返回:
- config_dictdict
配置名称 : 配置值对的字典。通过嵌套继承从 _config 类属性收集,然后从 _onfig_dynamic 对象属性收集任何覆盖和新标签。
- get_fitted_params(deep=True)[source]#
获取已拟合参数。
- 所需状态
需要状态为“已拟合” (fitted)。
- 参数:
- deepbool,默认为 True
是否返回组件的拟合参数。
如果为 True,将返回此对象的参数名称 : 值字典,包括可拟合组件(= BaseEstimator 类型参数)的拟合参数。
如果为 False,将返回此对象的参数名称 : 值字典,但不包括组件的拟合参数。
- 返回:
- fitted_params键为 str 类型的字典
拟合参数字典,包括参数名 : 参数值键值对
始终包括:此对象的所有拟合参数,如通过
get_param_names
获取。值为此对象对应键的拟合参数值如果
deep=True
,还包含组件参数的键/值对。组件参数的索引格式为[组件名称]__[参数名称]
。组件名称
的所有参数以参数名称
及其值的形式出现如果
deep=True
,还包含任意级别的组件递归,例如[组件名称]__[组件组件名称]__[参数名称]
等
- classmethod get_param_defaults()[source]#
获取对象的默认参数。
- 返回:
- default_dict: dict[str, Any]
键是
cls
中在__init__
中定义了默认值的所有参数。值是默认值,如__init__
中所定义。
- classmethod get_param_names(sort=True)[source]#
获取对象的参数名称。
- 参数:
- sortbool,默认为 True
是否按字母顺序返回参数名称 (True),或按它们在类
__init__
中出现的顺序返回 (False)。
- 返回:
- param_names: list[str]
cls
的参数名称列表。如果sort=False
,则按它们在类__init__
中出现的顺序排列。如果sort=True
,则按字母顺序排列。
- get_params(deep=True)[source]#
获取此对象的参数值字典。
- 参数:
- deepbool,默认为 True
是否返回组件的参数。
如果为
True
,将返回此对象的参数名称 : 值dict
,包括组件(=BaseObject
类型参数)的参数。如果为
False
,将返回此对象的参数名称 : 值dict
,但不包括组件的参数。
- 返回:
- params键为 str 类型的 dict
参数字典,包括参数名 : 参数值键值对
始终包括:此对象的所有参数,如通过
get_param_names
获取。值为此对象对应键的参数值。值始终与构造时传入的值相同如果
deep=True
,还包含组件参数的键/值对。组件参数的索引格式为[组件名称]__[参数名称]
。组件名称
的所有参数以参数名称
及其值的形式出现如果
deep=True
,还包含任意级别的组件递归,例如[组件名称]__[组件组件名称]__[参数名称]
等
- get_tag(tag_name, tag_value_default=None, raise_error=True)[source]#
从实例中获取标签值,包含标签级别继承和覆盖。
每个
scikit-base
兼容对象都包含一个标签字典。标签可用于存储关于对象的元数据,或控制对象的行为。标签是特定于实例
self
的键值对,它们是对象构造后不更改的静态标志。get_tag
方法从实例中检索名称为tag_name
的单个标签的值,考虑标签覆盖,优先级从高到低如下通过实例上的
set_tags
或clone_tags
设置的标签,
在实例构造时。
在类的
_tags
属性中设置的标签。在父类
_tags
属性中设置的标签,
按继承顺序。
- 参数:
- tag_namestr
要检索的标签名称
- tag_value_default任意类型,可选;默认为 None
如果未找到标签,则为默认/回退值
- raise_errorbool
未找到标签时是否引发
ValueError
- 返回:
- tag_valueAny
self
中tag_name
标签的值。如果未找到,且raise_error
为 True,则引发错误;否则返回tag_value_default
。
- 引发:
- ValueError,如果
raise_error
为True
。 如果
tag_name
不在self.get_tags().keys()
中,则引发ValueError
。
- ValueError,如果
- get_tags()[source]#
从实例中获取标签,包含标签级别继承和覆盖。
每个
scikit-base
兼容对象都包含一个标签字典。标签可用于存储关于对象的元数据,或控制对象的行为。标签是特定于实例
self
的键值对,它们是对象构造后不更改的静态标志。get_tags
方法返回一个标签字典,其键是类或其任何父类中设置的任何_tags
属性的键,或通过set_tags
或clone_tags
设置的标签。值是相应的标签值,覆盖优先级从高到低如下
通过实例上的
set_tags
或clone_tags
设置的标签,
在实例构造时。
在类的
_tags
属性中设置的标签。在父类
_tags
属性中设置的标签,
按继承顺序。
- 返回:
- collected_tagsdict
标签名称 : 标签值对的字典。通过嵌套继承从
_tags
类属性收集,然后从_tags_dynamic
对象属性收集任何覆盖和新标签。
- is_composite()[source]#
检查对象是否由其他 BaseObject 组成。
复合对象是指包含其他对象作为参数的对象。在实例上调用,因为这可能因实例而异。
- 返回:
- composite: bool
对象是否具有任何参数,其值是
BaseObject
的后代实例。
- property is_fitted[source]#
是否已调用
fit
方法。检查对象的
_is_fitted
属性,该属性在对象构造期间应初始化为False
,并在调用对象的 fit 方法时设置为 True。- 返回:
- bool
估计器是否已 fit (拟合)。
- classmethod load_from_path(serial)[source]#
从文件位置加载对象。
- 参数:
- serialZipFile(path).open(“object”) 的结果
- 返回:
- 反序列化的自身,结果输出在
path
,来自cls.save(path)
- 反序列化的自身,结果输出在
- classmethod load_from_serial(serial)[source]#
从序列化内存容器加载对象。
- 参数:
- serial
cls.save(None)
输出的第一个元素
- serial
- 返回:
- 反序列化的自身,结果输出为
serial
,来自cls.save(None)
- 反序列化的自身,结果输出为
- predict(X)[source]#
预测 X 中序列的标签。
- 参数:
- Xsktime 兼容的时间序列面板数据容器,属于 Panel scitype
用于预测标签的时间序列。
可以是
Panel
scitype 的任何 mtype,例如pd-multiindex: pd.DataFrame,列 = 变量,索引 = pd.MultiIndex,第一层 = 实例索引,第二层 = 时间索引
numpy3D: 3D np.array(任意维数,等长序列),形状为 [n_instances, n_dimensions, series_length]
或任何其他支持的
Panel
mtype
mtype 列表请参见
datatypes.SCITYPE_REGISTER
详细规范请参见
examples/AA_datatypes_and_datasets.ipynb
并非所有估计器都支持具有多元或长度不等序列的面板,详情请参见标签参考。
- 返回:
- y_predsktime 兼容的表格数据容器,属于 Table scitype
预测的类别标签
1D 可迭代对象,形状为 [n_instances],或 2D 可迭代对象,形状为 [n_instances, n_dimensions]。
第 0 个索引对应于 X 中的实例索引,第 1 个索引(如果适用)对应于 X 中的多输出向量索引。
如果是单变量 (一维),则为 1D np.ndarray;否则,与 fit 中传入的 y 类型相同
- predict_proba(X)[source]#
预测 X 中序列的标签概率。
- 参数:
- Xsktime 兼容的时间序列面板数据容器,属于 Panel scitype
用于预测标签的时间序列。
可以是
Panel
scitype 的任何 mtype,例如pd-multiindex: pd.DataFrame,列 = 变量,索引 = pd.MultiIndex,第一层 = 实例索引,第二层 = 时间索引
numpy3D: 3D np.array(任意维数,等长序列),形状为 [n_instances, n_dimensions, series_length]
或任何其他支持的
Panel
mtype
mtype 列表请参见
datatypes.SCITYPE_REGISTER
详细规范请参见
examples/AA_datatypes_and_datasets.ipynb
并非所有估计器都支持具有多元或长度不等序列的面板,详情请参见标签参考。
- 返回:
- y_pred2D np.array,类型为 int,形状为 [n_instances, n_classes]
预测的类别标签概率。第 0 个索引对应于 X 中的实例索引,第 1 个索引对应于类别索引,顺序与 self.classes_ 中的相同。条目是预测的类别概率,总和为 1。
- reset()[source]#
将对象重置为干净的初始化后状态。
结果是将
self
设置为构造函数调用后直接所处的状态,并保留相同的超参数。由set_config
设置的配置值也同样保留。调用
reset
会删除所有对象属性,但以下情况除外:超参数 = 写入
self
的__init__
参数,例如self.paramname
,其中paramname
是__init__
的一个参数。包含双下划线的对象属性,即字符串“__”。例如,名为“__myattr”的属性会被保留。
配置属性,配置会原样保留。也就是说,在
reset
调用前后,get_config
的结果是相同的。
类和对象方法,以及类属性也不会受到影响。
等同于
clone
,但reset
修改的是self
本身,而不是返回一个新的对象。在调用
self.reset()
后,self
的值和状态与调用构造函数``type(self)(**self.get_params(deep=False))`` 后获取的对象相同。- 返回:
- self
类实例重置为干净的初始化后状态,但保留当前的超参数值。
- save(path=None, serialization_format='pickle')[源代码]#
将序列化的自身保存到字节类对象或到 (.zip) 文件。
行为:如果
path
为 None,则返回一个内存中的序列化 self;如果path
是文件位置,则在该位置将 self 存储为 zip 文件保存的文件是 zip 文件,包含以下内容: _metadata - 包含 self 的类,即 type(self) _obj - 序列化后的 self。此类使用默认的序列化(pickle)。
- 参数:
- pathNone 或文件位置 (str 或 Path)
如果为 None,则 self 保存到内存对象中;如果是文件位置,则 self 保存到该文件位置。如果
path=”estimator”,则将在当前工作目录 (cwd) 中创建一个 zip 文件
estimator.zip
。path=”/home/stored/estimator”,则 zip 文件
estimator.zip
将被
存储在
/home/stored/
中。- serialization_format: str,默认值 = “pickle”
用于序列化的模块。可用选项有“pickle”和“cloudpickle”。请注意,非默认格式可能需要安装其他软依赖项。
- 返回:
- 如果
path
为 None - 内存中的序列化 self - 如果
path
是文件位置 - 引用该文件的 ZipFile 对象
- 如果
- score(X, y) float [源代码]#
对 X 上的预测标签与真实标签进行评分。
- 参数:
- Xsktime 兼容的时间序列面板数据容器,属于 Panel scitype
用于评估预测标签的时间序列。
可以是
Panel
scitype 的任何 mtype,例如pd-multiindex: pd.DataFrame,列 = 变量,索引 = pd.MultiIndex,第一层 = 实例索引,第二层 = 时间索引
numpy3D: 3D np.array(任意维数,等长序列),形状为 [n_instances, n_dimensions, series_length]
或任何其他支持的
Panel
mtype
mtype 列表请参见
datatypes.SCITYPE_REGISTER
详细规范请参见
examples/AA_datatypes_and_datasets.ipynb
并非所有估计器都支持具有多元或长度不等序列的面板,详情请参见标签参考。
- ysktime 兼容的表格数据容器,属于 Table scitype
1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions],用于拟合的类别标签。第 0 个索引对应于 X 中的实例索引,第 1 个索引(如果适用)对应于 X 中的多输出向量索引。支持的 sktime 类型:np.ndarray (1D, 2D)、pd.Series、pd.DataFrame
- 返回:
- float,predict(X) 相对于 y 的准确率。
- set_config(**config_dict)[源代码]#
将配置标志设置为给定值。
- 参数:
- config_dictdict
配置名称 : 配置值 对的字典。有效的配置、值及其含义如下所示
- displaystr,“diagram”(默认)或“text”
jupyter 内核如何显示 self 的实例
“diagram” = html 框图表示
“text” = 字符串打印输出
- print_changed_onlybool,默认值=True
打印 self 时,是只列出与默认值不同的参数(True),还是列出所有参数名称和值(False)。不进行嵌套,即只影响 self,不影响组件估计器。
- warningsstr,“on”(默认)或“off”
是否发出警告,仅影响 sktime 的警告
“on” = 将发出 sktime 的警告
“off” = 不会发出 sktime 的警告
- backend:parallelstr,可选,默认值=”None”
广播/向量化时用于并行的后端,以下之一:
“None”:顺序执行循环,简单的列表推导式
“loky”、“multiprocessing”和“threading”:使用
joblib.Parallel
“joblib”:自定义和第三方
joblib
后端,例如spark
“dask”:使用
dask
,需要环境中安装dask
包“ray”:使用
ray
,需要环境中安装ray
包
- backend:parallel:paramsdict,可选,默认值={}(不传递参数)
作为配置传递给并行化后端的额外参数。有效键取决于
backend:parallel
的值“None”:无额外参数,忽略
backend_params
“loky”、“multiprocessing”和“threading”:默认
joblib
后端。任何joblib.Parallel
的有效键都可以在此处传递,例如n_jobs
,但backend
除外,它由backend
直接控制。如果未传递n_jobs
,则默认为-1
,其他参数将默认为joblib
的默认值。“joblib”:自定义和第三方
joblib
后端,例如spark
。任何joblib.Parallel
的有效键都可以在此处传递,例如n_jobs
。在这种情况下,backend
必须作为backend_params
的一个键传递。如果未传递n_jobs
,则默认为-1
,其他参数将默认为joblib
的默认值。“dask”:可以传递
dask.compute
的任何有效键,例如scheduler
“ray”:可以传递以下键
“ray_remote_args”:
ray.init
的有效键的字典- “shutdown_ray”:bool,默认值=True;False 会阻止
ray
在并行化后 关闭。
- “shutdown_ray”:bool,默认值=True;False 会阻止
“logger_name”:str,默认值=”ray”;要使用的日志记录器的名称。
“mute_warnings”:bool,默认值=False;如果为 True,则抑制警告
- 返回:
- self对 self 的引用。
注意
改变对象状态,将 config_dict 中的配置复制到 self._config_dynamic。
- set_params(**params)[源代码]#
设置此对象的参数。
此方法适用于简单的 skbase 对象以及组合对象。参数键字符串
<component>__<parameter>
可用于组合对象(即包含其他对象的对象),以访问组件<component>
中的<parameter>
。如果不会引起歧义(例如,没有两个组件的参数名称相同),也可以使用不带<component>__
前缀的字符串<parameter>
。- 参数:
- **paramsdict
BaseObject 参数,键必须是
<component>__<parameter>
字符串。__
后缀可以作为完整字符串的别名,如果在 get_params 键中唯一的话。
- 返回:
- self对 self 的引用(设置参数后)
- set_random_state(random_state=None, deep=True, self_policy='copy')[源代码]#
为自身设置 random_state 伪随机种子参数。
通过
self.get_params
查找名为random_state
的参数,并通过set_params
将它们设置为从输入的random_state
派生的整数。这些整数通过sample_dependent_seed
从链式哈希中采样,并保证种子随机生成器之间的伪随机独立性。根据
self_policy
应用于self
中的random_state
参数,并且仅在deep=True
时应用于剩余的组件对象。注意:即使
self
没有random_state
参数,或没有任何组件有random_state
参数,也会调用set_params
。因此,set_random_state
会重置任何scikit-base
对象,即使是那些没有random_state
参数的对象。- 参数:
- random_stateint, RandomState 实例或 None,默认值=None
用于控制随机整数生成的伪随机数生成器。传入整数可在多次函数调用中获得可复现的输出。
- deepbool,默认为 True
是否设置 skbase 对象值参数(即组件估计器)中的随机状态。
如果为 False,则仅设置
self
的random_state
参数(如果存在)。如果为 True,则也会设置组件对象中的
random_state
参数。
- self_policystr,以下之一:{“copy”, “keep”, “new”},默认值=”copy”
“copy”:
self.random_state
设置为输入的random_state
“keep”:
self.random_state
保持原样“new”:
self.random_state
设置为一个新的随机状态,
由输入的
random_state
派生,通常与输入不同
- 返回:
- self对 self 的引用
- set_tags(**tag_dict)[源代码]#
将实例级别标签覆盖设置为给定值。
每个
scikit-base
兼容对象都包含一个标签字典,用于存储对象的元数据。标签是特定于实例
self
的键值对,它们是对象构建后不会更改的静态标志。它们可用于元数据检查或控制对象的行为。set_tags
将动态标签覆盖设置为tag_dict
中指定的值,其中键是标签名称,字典值是要将标签设置成的值。set_tags
方法应仅在对象的__init__
方法中、对象构建期间或通过__init__
直接构建后调用。当前标签值可以通过
get_tags
或get_tag
进行检查。- 参数:
- **tag_dictdict
标签名称 : 标签值 对的字典。
- 返回:
- Self
对 self 的引用。