StatsForecastAutoTheta#

class StatsForecastAutoTheta(season_length: int = 1, decomposition_type: str = 'multiplicative', model: str | None = None)[source]#

Statsforecast AutoTheta 估计器。

直接对接 Nixtla 的 statsforecast.models.AutoTheta 接口。

此估计器直接对接 Nixtla 的 statsforecast [1] 中的 AutoTheta

AutoTheta 模型自动使用 MSE 选择最佳的 Theta 模型(标准 Theta 模型 (“STM”)、优化 Theta 模型 (“OTM”)、动态标准 Theta 模型 (“DSTM”)、动态优化 Theta 模型 (“DOTM”))。

参数:
season_lengthint, 可选,默认值=1

每个时间单位的观测数量(例如,小时数据的 24),默认为 1

decomposition_typestr, 可选,默认值=”multipliciative”

可能的值:“additive”、“multiplicative” 季节分解类型,默认为“multiplicative”

modelOptional[str], 可选

控制 Theta 模型,默认为搜索最佳模型

属性:
cutoff

截止点 = 预测器的“当前时间”状态。

fh

已传递的预测范围。

is_fitted

是否已调用 fit 方法。

另请参阅

ThetaForecaster

参考资料

方法

check_is_fitted([method_name])

检查估计器是否已拟合。

clone()

获取一个具有相同超参数和配置的对象的克隆。

clone_tags(estimator[, tag_names])

将标签从另一个对象克隆为动态覆盖。

create_test_instance([parameter_set])

使用第一个测试参数集构造类的实例。

create_test_instances_and_names([parameter_set])

创建所有测试实例的列表以及它们的名称列表。

fit(y[, X, fh])

将预测器拟合到训练数据。

fit_predict(y[, X, fh, X_pred])

在未来范围内拟合和预测时间序列。

get_class_tag(tag_name[, tag_value_default])

从类获取类标签值,具有来自父类的标签级别继承。

get_class_tags()

从类获取类标签,具有来自父类的标签级别继承。

get_config()

获取对象的配置标志。

get_fitted_params([deep])

获取已拟合参数。

get_param_defaults()

获取对象的参数默认值。

get_param_names([sort])

获取对象的参数名称。

get_params([deep])

获取此对象的参数值字典。

get_tag(tag_name[, tag_value_default, ...])

从实例获取标签值,具有标签级别继承和覆盖。

get_tags()

从实例获取标签,具有标签级别继承和覆盖。

get_test_params([parameter_set])

返回估计器的测试参数设置。

is_composite()

检查对象是否由其他 BaseObjects 组成。

load_from_path(serial)

从文件位置加载对象。

load_from_serial(serial)

从序列化内存容器加载对象。

predict([fh, X])

在未来范围内预测时间序列。

predict_interval([fh, X, coverage])

计算/返回预测区间预测。

predict_proba([fh, X, marginal])

计算/返回完全概率预测。

predict_quantiles([fh, X, alpha])

计算/返回分位数预测。

predict_residuals([y, X])

返回时间序列预测的残差。

predict_var([fh, X, cov])

计算/返回方差预测。

reset()

将对象重置到干净的初始化后状态。

save([path, serialization_format])

将序列化对象保存到字节状对象或 (.zip) 文件。

score(y[, X, fh])

使用 MAPE(非对称)评估预测与真实值的得分。

set_config(**config_dict)

将配置标志设置为给定值。

set_params(**params)

设置此对象的参数。

set_random_state([random_state, deep, ...])

为对象设置 random_state 伪随机种子参数。

set_tags(**tag_dict)

将实例级别标签覆盖设置为给定值。

update(y[, X, update_params])

更新截止点值,并且可选地更新拟合参数。

update_predict(y[, cv, X, update_params, ...])

在测试集上迭代进行预测和模型更新。

update_predict_single([y, fh, X, update_params])

使用新数据更新模型并进行预测。

classmethod get_test_params(parameter_set='default')[source]#

返回估计器的测试参数设置。

参数:
parameter_setstr, 默认值=”default”

要返回的测试参数集的名称,用于测试。如果未为某个值定义特殊参数,将返回 "default" 集。当前没有为预测器保留的值。

返回:
paramsdict 或 dict 列表,默认值 = {}

用于创建类的测试实例的参数 每个 dict 都是构造一个“有趣的”测试实例的参数,即 MyClass(**params)MyClass(**params[i]) 创建一个有效的测试实例。create_test_instance 使用 params 中的第一个(或唯一一个)字典

check_is_fitted(method_name=None)[source]#

检查估计器是否已拟合。

检查 _is_fitted 属性是否存在且为 True。在调用对象的 fit 方法时,is_fitted 属性应设置为 True

如果不是,则引发 NotFittedError

参数:
method_namestr, 可选

调用此函数的方法的名称。如果提供,错误消息将包含此信息。

引发:
NotFittedError

如果估计器尚未拟合。

clone()[source]#

获取一个具有相同超参数和配置的对象的克隆。

克隆是一个没有共享引用、处于初始化后状态的不同对象。此函数等同于返回 selfsklearn.clone

等同于构造 type(self) 的新实例,并使用 self 的参数,即 type(self)(**self.get_params(deep=False))

如果在 self 上设置了配置,则克隆也将具有与原始对象相同的配置,等同于调用 cloned_self.set_config(**self.get_config())

其值也等同于调用 self.reset,但 clone 返回一个新对象,而不是像 reset 那样修改 self

引发:
如果由于 __init__ 错误导致克隆不合规,则引发 RuntimeError。
clone_tags(estimator, tag_names=None)[source]#

将标签从另一个对象克隆为动态覆盖。

每个 scikit-base 兼容对象都有一个标签字典。标签可用于存储关于对象的元数据,或控制对象的行为。

标签是特定于实例 self 的键值对,它们是对象构造后不会更改的静态标志。

clone_tags 从另一个对象 estimator 设置动态标签覆盖。

clone_tags 方法应仅在对象的 __init__ 方法中调用,即在构造期间或通过 __init__ 构造后直接调用。

动态标签设置为 estimator 中标签的值,其名称由 tag_names 指定。

tag_names 的默认值是将 estimator 中的所有标签写入 self

可以通过 get_tagsget_tag 检查当前标签值。

参数:
estimator:class:BaseObject 或派生类的实例
tag_namesstr 或 list of str,默认值 = None

要克隆的标签名称。默认值 (None) 克隆来自 estimator 的所有标签。

返回:
self

self 的引用。

classmethod create_test_instance(parameter_set='default')[source]#

使用第一个测试参数集构造类的实例。

参数:
parameter_setstr, 默认值=”default”

要返回的测试参数集的名称,用于测试。如果未为某个值定义特殊参数,将返回 “default” 集。

返回:
instance具有默认参数的类的实例
classmethod create_test_instances_and_names(parameter_set='default')[source]#

创建所有测试实例的列表以及它们的名称列表。

参数:
parameter_setstr, 默认值=”default”

要返回的测试参数集的名称,用于测试。如果未为某个值定义特殊参数,将返回 “default” 集。

返回:
objscls 实例列表

第 i 个实例是 cls(**cls.get_test_params()[i])

namesstr 列表,长度与 objs 相同

第 i 个元素是测试中第 i 个 obj 实例的名称。如果实例多于一个,命名约定为 {cls.__name__}-{i},否则为 {cls.__name__}

property cutoff[source]#

截止点 = 预测器的“当前时间”状态。

返回:
cutoffpandas 兼容的索引元素,或 None

如果 cutoff 已设置,则是 pandas 兼容的索引元素;否则为 None

property fh[source]#

已传递的预测范围。

fit(y, X=None, fh=None)[source]#

将预测器拟合到训练数据。

状态更改

将状态更改为“已拟合”。

写入 self

  • 设置以“_”结尾的拟合模型属性,拟合属性可通过 get_fitted_params 检查。

  • self.is_fitted 标志设置为 True

  • self.cutoff 设置为在 y 中看到的最后一个索引。

  • 如果传递了 fh,则将 fh 存储到 self.fh

参数:
ysktime 兼容数据容器格式的时间序列。

用于拟合预测器的时间序列。

sktime 中的个体数据格式称为 mtype 规范,每种 mtype 都实现了一个抽象的 scitype

  • Series scitype = 单个时间序列,普通预测。pd.DataFramepd.Seriesnp.ndarray(1D 或 2D)

  • Panel scitype = 时间序列集合,全局/面板预测。具有 2 级行 MultiIndex (instance, time)pd.DataFrame3D np.ndarray (instance, variable, time)Series 类型的 pd.DataFrame list

  • Hierarchical scitype = 分层集合,用于分层预测。具有 3 个或更多级别行 MultiIndex (hierarchy_1, ..., hierarchy_n, time)pd.DataFrame

有关数据格式的更多详细信息,请参阅 mtype 词汇表。有关用法,请参阅预测教程 examples/01_forecasting.ipynb

fhint, list, pd.Index 可强制转换,或 ForecastingHorizon,默认值=None

编码要预测的时间戳的预测范围。如果 self.get_tag("requires-fh-in-fit")True,则必须在 fit 中传递,不可选

Xsktime 兼容格式的时间序列,可选(默认值=None)。

用于拟合模型的外生时间序列。应与 y 具有相同的 scitypeSeriesPanelHierarchical)。如果 self.get_tag("X-y-must-have-same-index")True,则 X.index 必须包含 y.index

返回:
self自引用。
fit_predict(y, X=None, fh=None, X_pred=None)[source]#

在未来范围内拟合和预测时间序列。

fit(y, X, fh).predict(X_pred) 相同。如果未传递 X_pred,则与 fit(y, fh, X).predict(X) 相同。

状态更改

将状态更改为“已拟合”。

写入 self

  • 设置以“_”结尾的拟合模型属性,拟合属性可通过 get_fitted_params 检查。

  • self.is_fitted 标志设置为 True

  • self.cutoff 设置为在 y 中看到的最后一个索引。

  • fh 存储到 self.fh

参数:
ysktime 兼容数据容器格式的时间序列

用于拟合预测器的时间序列。

sktime 中的个体数据格式称为 mtype 规范,每种 mtype 都实现了一个抽象的 scitype

  • Series scitype = 单个时间序列,普通预测。pd.DataFramepd.Seriesnp.ndarray(1D 或 2D)

  • Panel scitype = 时间序列集合,全局/面板预测。具有 2 级行 MultiIndex (instance, time)pd.DataFrame3D np.ndarray (instance, variable, time)Series 类型的 pd.DataFrame list

  • Hierarchical scitype = 分层集合,用于分层预测。具有 3 个或更多级别行 MultiIndex (hierarchy_1, ..., hierarchy_n, time)pd.DataFrame

有关数据格式的更多详细信息,请参阅 mtype 词汇表。有关用法,请参阅预测教程 examples/01_forecasting.ipynb

fhint, list, pd.Index 可强制转换,或 ForecastingHorizon(非可选)

编码要预测的时间戳的预测范围。

如果 fh 不为 None 且不是 ForecastingHorizon 类型,则通过调用 _check_fh 将其强制转换为 ForecastingHorizon。特别是,如果 fh 是 pd.Index 类型,则通过 ForecastingHorizon(fh, is_relative=False) 将其强制转换。

Xsktime 兼容格式的时间序列,可选(默认值=None)。

用于拟合模型的外生时间序列。应与 y 具有相同的 scitypeSeriesPanelHierarchical)。如果 self.get_tag("X-y-must-have-same-index")True,则 X.index 必须包含 y.index

X_predsktime 兼容格式的时间序列,可选(默认值=None)

用于预测的外生时间序列。如果传递,将在预测中使用,而不是 X。应与 fit 中的 y 具有相同的 scitype(SeriesPanelHierarchical)。如果 self.get_tag("X-y-must-have-same-index")True,则 X.index 必须包含 fh 索引引用。

返回:
y_predsktime 兼容数据容器格式的时间序列

fh 处的点预测,与 fh 具有相同的索引。y_pred 与最近传递的 y 具有相同的类型:SeriesPanelHierarchical scitype,相同格式(见上文)

classmethod get_class_tag(tag_name, tag_value_default=None)[source]#

从类获取类标签值,具有来自父类的标签级别继承。

每个 scikit-base 兼容对象都有一个标签字典,用于存储关于对象的元数据。

get_class_tag 方法是一个类方法,仅考虑类级别标签值和覆盖来检索标签的值。

它从对象返回名称为 tag_name 的标签值,按以下优先级降序考虑标签覆盖

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按继承顺序。

不考虑在实例上设置的动态标签覆盖(通过 set_tagsclone_tags 设置)。

要检索可能包含实例覆盖的标签值,请改用 get_tag 方法。

参数:
tag_namestr

标签值的名称。

tag_value_defaultany type, 可选;默认值=None

如果找不到标签,则为默认/回退值。

返回:
tag_value

selftag_name 标签的值。如果找不到,则返回 tag_value_default

classmethod get_class_tags()[source]#

从类获取类标签,具有来自父类的标签级别继承。

每个 scikit-base 兼容对象都有一个标签字典。标签可用于存储关于对象的元数据,或控制对象的行为。

标签是特定于实例 self 的键值对,它们是对象构造后不会更改的静态标志。

get_class_tags 方法是一个类方法,仅考虑类级别标签值和覆盖来检索标签的值。

它返回一个字典,其键是类或其任何父类中设置的 _tags 属性的任何键。

值是相应的标签值,覆盖按以下优先级降序排列

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按继承顺序。

实例可以根据超参数覆盖这些标签。

要检索可能包含实例覆盖的标签,请改用 get_tags 方法。

不考虑在实例上设置的动态标签覆盖(通过 set_tagsclone_tags 设置)。

要包含动态标签的覆盖,请使用 get_tags

collected_tagsdict

标签名称 : 标签值对的字典。通过嵌套继承从 _tags 类属性收集。不被通过 set_tagsclone_tags 设置的动态标签覆盖。

get_config()[source]#

获取对象的配置标志。

配置是 self 的键值对,通常用作控制行为的瞬时标志。

get_config 返回动态配置,它们覆盖默认配置。

默认配置在类或其父类的类属性 _config 中设置,并通过 set_config 设置的动态配置覆盖。

配置在 clonereset 调用中保留。

返回:
config_dictdict

配置名称 : 配置值对的字典。通过嵌套继承从 _config 类属性收集,然后是 _onfig_dynamic 对象属性中的任何覆盖和新标签。

get_fitted_params(deep=True)[source]#

获取已拟合参数。

所需状态

要求状态为“已拟合”。

参数:
deepbool, 默认值=True

是否返回组件的拟合参数。

  • 如果为 True,将返回此对象的参数名称 : 值字典,包括可拟合组件(= BaseEstimator 值的参数)的拟合参数。

  • 如果为 False,将返回此对象的参数名称 : 值字典,但不包含组件的拟合参数。

返回:
fitted_params具有 str 值键的 dict

拟合参数字典,paramname : paramvalue 键值对包括

  • 始终:此对象的所有拟合参数,如通过 get_param_names 获取的值是该键对应的此对象的拟合参数值

  • 如果 deep=True,也包含组件参数的键/值对 组件参数索引为 [componentname]__[paramname] componentname 的所有参数显示为 paramname 及其值

  • 如果 deep=True,也包含任意级别的组件递归,例如 [componentname]__[componentcomponentname]__[paramname]

classmethod get_param_defaults()[source]#

获取对象的参数默认值。

返回:
default_dict: dict[str, Any]

键是 cls 中在 __init__ 中定义了默认值的所有参数。值是在 __init__ 中定义的默认值。

classmethod get_param_names(sort=True)[source]#

获取对象的参数名称。

参数:
sortbool, 默认值=True

是否按字母顺序(True)或按它们在类 __init__ 中出现的顺序(False)返回参数名称。

返回:
param_names: list[str]

cls 的参数名称列表。如果 sort=False,则按它们在类 __init__ 中出现的顺序排列。如果 sort=True,则按字母顺序排列。

get_params(deep=True)[source]#

获取此对象的参数值字典。

参数:
deepbool, 默认值=True

是否返回组件的参数。

  • 如果为 True,将返回此对象的参数名称 : 值 dict,包括组件参数(= BaseObject 值的参数)。

  • 如果为 False,将返回此对象的参数名称 : 值 dict,但不包含组件参数。

返回:
params具有 str 值键的 dict

参数字典,paramname : paramvalue 键值对包括

  • 始终:此对象的所有参数,如通过 get_param_names 获取的值是该键对应的此对象的参数值,其值始终与构造时传递的值相同

  • 如果 deep=True,也包含组件参数的键/值对 组件参数索引为 [componentname]__[paramname] componentname 的所有参数显示为 paramname 及其值

  • 如果 deep=True,也包含任意级别的组件递归,例如 [componentname]__[componentcomponentname]__[paramname]

get_tag(tag_name, tag_value_default=None, raise_error=True)[source]#

从实例获取标签值,具有标签级别继承和覆盖。

每个 scikit-base 兼容对象都有一个标签字典。标签可用于存储关于对象的元数据,或控制对象的行为。

标签是特定于实例 self 的键值对,它们是对象构造后不会更改的静态标志。

get_tag 方法从实例中检索名称为 tag_name 的单个标签的值,按以下优先级降序考虑标签覆盖

  1. 通过 set_tagsclone_tags 在实例上设置的标签,

在实例构造时。

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按继承顺序。

参数:
tag_namestr

要检索的标签名称

tag_value_defaultany type, 可选;默认值=None

如果找不到标签,则为默认/回退值

raise_errorbool

当找不到标签时是否引发 ValueError

返回:
tag_valueAny

selftag_name 标签的值。如果找不到,并且 raise_error 为 True,则引发错误,否则返回 tag_value_default

引发:
ValueError,如果 raise_errorTrue

如果 tag_name 不在 self.get_tags().keys() 中,则引发 ValueError

get_tags()[source]#

从实例获取标签,具有标签级别继承和覆盖。

每个 scikit-base 兼容对象都有一个标签字典。标签可用于存储关于对象的元数据,或控制对象的行为。

标签是特定于实例 self 的键值对,它们是对象构造后不会更改的静态标志。

get_tags 方法返回一个标签字典,其键是类或其任何父类中设置的 _tags 属性的任何键,或者通过 set_tagsclone_tags 设置的标签。

值是相应的标签值,覆盖按以下优先级降序排列

  1. 通过 set_tagsclone_tags 在实例上设置的标签,

在实例构造时。

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按继承顺序。

返回:
collected_tagsdict

标签名称 : 标签值对的字典。通过嵌套继承从 _tags 类属性收集,然后是 _tags_dynamic 对象属性中的任何覆盖和新标签。

is_composite()[source]#

检查对象是否由其他 BaseObjects 组成。

复合对象是包含其他对象作为参数的对象。在实例上调用,因为这可能因实例而异。

返回:
composite: bool

对象的任何参数值是否为 BaseObject 的派生实例。

property is_fitted[source]#

是否已调用 fit 方法。

检查对象的 _is_fitted` 属性,该属性在对象构造期间应初始化为 ``False,并在调用对象的 fit 方法时设置为 True。

返回:
bool

估计器是否已 fit

classmethod load_from_path(serial)[source]#

从文件位置加载对象。

参数:
serialZipFile(path).open(“object”) 的结果
返回:
反序列化 self,结果输出到 path,来自 cls.save(path)
classmethod load_from_serial(serial)[source]#

从序列化内存容器加载对象。

参数:
serialcls.save(None) 输出的第 1 个元素
返回:
反序列化 self,结果输出为 serial,来自 cls.save(None)
predict(fh=None, X=None)[source]#

在未来范围内预测时间序列。

所需状态

要求状态为“已拟合”,即 self.is_fitted=True

访问 self 中的属性

  • 以“_”结尾的拟合模型属性。

  • self.cutoffself.is_fitted

写入 self

如果传递了 fh 且之前未传递过,则将 fh 存储到 self.fh

参数:
fhint, list, pd.Index 可强制转换,或 ForecastingHorizon,默认值=None

编码要预测的时间戳的预测范围。如果已在 fit 中传递,则不应再传递。如果未在 fit 中传递,则必须传递,不可选。

如果 fh 不为 None 且不是 ForecastingHorizon 类型,则通过调用 _check_fh 将其强制转换为 ForecastingHorizon。特别是,如果 fh 是 pd.Index 类型,则通过 ForecastingHorizon(fh, is_relative=False) 将其强制转换。

Xsktime 兼容格式的时间序列,可选(默认值=None)

用于预测的外生时间序列。应与 fit 中的 y 具有相同的 scitype(SeriesPanelHierarchical)。如果 self.get_tag("X-y-must-have-same-index")True,则 X.index 必须包含 fh 索引引用。

返回:
y_predsktime 兼容数据容器格式的时间序列

fh 处的点预测,与 fh 具有相同的索引。y_pred 与最近传递的 y 具有相同的类型:SeriesPanelHierarchical scitype,相同格式(见上文)

predict_interval(fh=None, X=None, coverage=0.9)[source]#

计算/返回预测区间预测。

如果 coverage 是可迭代的,则会计算多个区间。

所需状态

要求状态为“已拟合”,即 self.is_fitted=True

访问 self 中的属性

  • 以“_”结尾的拟合模型属性。

  • self.cutoffself.is_fitted

写入 self

如果传递了 fh 且之前未传递过,则将 fh 存储到 self.fh

参数:
fhint, list, pd.Index 可强制转换,或 ForecastingHorizon,默认值=None

编码要预测的时间戳的预测范围。如果已在 fit 中传递,则不应再传递。如果未在 fit 中传递,则必须传递,不可选。

如果 fh 不是 None 且类型不是 ForecastingHorizon,它将在内部被强制转换为 ForecastingHorizon 类型 (通过 _check_fh)。

  • 如果 fhintint 的 array-like 类型,则被解释为相对预测期,并被强制转换为相对的 ForecastingHorizon(fh, is_relative=True)

  • 如果 fh 的类型是 pd.Index,则被解释为绝对预测期,并被强制转换为绝对的 ForecastingHorizon(fh, is_relative=False)

Xsktime 兼容格式的时间序列,可选(默认值=None)

用于预测的外生时间序列。应与 fit 中的 y 具有相同的 scitype(SeriesPanelHierarchical)。如果 self.get_tag("X-y-must-have-same-index")True,则 X.index 必须包含 fh 索引引用。

coveragefloat 或包含唯一 float 值的列表,可选 (默认值=0.90)

预测区间(s) 的名义覆盖率(s)

返回:
pred_intpd.DataFrame
列具有多级索引:第一级是来自 fit 中 y 的变量名称,
第二级是计算区间的覆盖率分数。

顺序与输入 coverage 中的顺序相同。

第三级是字符串 “lower” 或 “upper”,表示区间的下限/上限。

行索引是 fh,额外(上层)级别等于实例级别,

来自 fit 中看到的 y,如果 fit 中看到的 y 是 Panel 或 Hierarchical 类型。

条目是下限/上限区间的预测值,

对于列索引中的变量,位于第二列索引中的名义覆盖率处,第三列索引决定是下限还是上限,对应于行索引。上限/下限区间的预测等同于在 alpha = 0.5 - c/2 和 0.5 + c/2 处的分位数预测,其中 c 是 coverage 中的值。

predict_proba(fh=None, X=None, marginal=True)[source]#

计算/返回完全概率预测。

注意

  • 目前仅针对 Series (非面板,非层次) y 实现。

  • 需要安装 skpro 以返回分布对象。

所需状态

要求状态为“已拟合”,即 self.is_fitted=True

访问 self 中的属性

  • 以“_”结尾的拟合模型属性。

  • self.cutoffself.is_fitted

写入 self

如果传递了 fh 且之前未传递过,则将 fh 存储到 self.fh

参数:
fhint, list, pd.Index 可强制转换,或 ForecastingHorizon,默认值=None

编码要预测的时间戳的预测范围。如果已在 fit 中传递,则不应再传递。如果未在 fit 中传递,则必须传递,不可选。

如果 fh 不是 None 且类型不是 ForecastingHorizon,它将在内部被强制转换为 ForecastingHorizon 类型 (通过 _check_fh)。

  • 如果 fhintint 的 array-like 类型,则被解释为相对预测期,并被强制转换为相对的 ForecastingHorizon(fh, is_relative=True)

  • 如果 fh 的类型是 pd.Index,则被解释为绝对预测期,并被强制转换为绝对的 ForecastingHorizon(fh, is_relative=False)

Xsktime 兼容格式的时间序列,可选(默认值=None)

用于预测的外生时间序列。应与 fit 中的 y 具有相同的 scitype(SeriesPanelHierarchical)。如果 self.get_tag("X-y-must-have-same-index")True,则 X.index 必须包含 fh 索引引用。

marginalbool 类型,可选 (默认值=True)

返回的分布是否按时间索引是边际分布

返回:
pred_distskpro BaseDistribution

如果 marginal=True,则是预测分布;如果 marginal=False 且方法已实现,则将是按时间点的边际分布,否则将是联合分布。

predict_quantiles(fh=None, X=None, alpha=None)[source]#

计算/返回分位数预测。

如果 alpha 是可迭代的,则会计算多个分位数。

所需状态

要求状态为“已拟合”,即 self.is_fitted=True

访问 self 中的属性

  • 以“_”结尾的拟合模型属性。

  • self.cutoffself.is_fitted

写入 self

如果传递了 fh 且之前未传递过,则将 fh 存储到 self.fh

参数:
fhint, list, pd.Index 可强制转换,或 ForecastingHorizon,默认值=None

编码要预测的时间戳的预测范围。如果已在 fit 中传递,则不应再传递。如果未在 fit 中传递,则必须传递,不可选。

如果 fh 不是 None 且类型不是 ForecastingHorizon,它将在内部被强制转换为 ForecastingHorizon 类型 (通过 _check_fh)。

  • 如果 fhintint 的 array-like 类型,则被解释为相对预测期,并被强制转换为相对的 ForecastingHorizon(fh, is_relative=True)

  • 如果 fh 的类型是 pd.Index,则被解释为绝对预测期,并被强制转换为绝对的 ForecastingHorizon(fh, is_relative=False)

Xsktime 兼容格式的时间序列,可选(默认值=None)

用于预测的外生时间序列。应与 fit 中的 y 具有相同的 scitype(SeriesPanelHierarchical)。如果 self.get_tag("X-y-must-have-same-index")True,则 X.index 必须包含 fh 索引引用。

alphafloat 或包含唯一 float 值的列表,可选 (默认值=[0.05, 0.95])

一个或多个概率值,用于计算分位数预测。

返回:
quantilespd.DataFrame
列具有多级索引:第一级是来自 fit 中 y 的变量名称,

第二级是传递给函数的 alpha 值。

行索引是 fh,额外(上层)级别等于实例级别,

来自 fit 中看到的 y,如果 fit 中看到的 y 是 Panel 或 Hierarchical 类型。

条目是分位数预测值,对于列索引中的变量,

位于第二列索引中的分位数概率处,对应于行索引。

predict_residuals(y=None, X=None)[source]#

返回时间序列预测的残差。

将计算 y.index 处的预测残差。

如果在 fit 中必须传递 fh,则必须与 y.index 一致。如果 y 是 np.ndarray 类型,且在 fit 中没有传递 fh,则将在 fh 为 range(len(y.shape[0])) 处计算残差。

所需状态

需要处于“已拟合”状态。如果设置了 fh,则必须与 y 的索引(pandas 或整数)一致。

访问 self 中的属性

拟合模型的属性以“_”结尾。self.cutoff, self._is_fitted

写入 self

无。

参数:
ysktime 兼容数据容器格式的时间序列

具有真实观测值的时间序列,用于计算残差。必须与 predict 的预期返回具有相同的类型、维度和索引。

如果为 None,则使用目前为止已见的 y (self._y),特别是

  • 如果之前只有一次 fit 调用,则会产生样本内残差

  • 如果 fit 需要 fh,它必须指向 fit 中 y 的索引

Xsktime 兼容格式的时间序列,可选 (默认值=None)

用于更新和预测的外生时间序列。应与 fit 中的 y 具有相同的 scitype 类型 (Series, Panel, 或 Hierarchical)。如果 self.get_tag("X-y-must-have-same-index") 为 True,则 X.index 必须包含 fh 索引引用和 y.index

返回:
y_ressktime 兼容数据容器格式的时间序列

fh 处的预测残差,具有与 fh 相同的索引。y_res 具有与最近传递的 y 相同的类型:Series, Panel, Hierarchical scitype 类型,相同的格式(见上文)。

predict_var(fh=None, X=None, cov=False)[source]#

计算/返回方差预测。

所需状态

要求状态为“已拟合”,即 self.is_fitted=True

访问 self 中的属性

  • 以“_”结尾的拟合模型属性。

  • self.cutoffself.is_fitted

写入 self

如果传递了 fh 且之前未传递过,则将 fh 存储到 self.fh

参数:
fhint, list, pd.Index 可强制转换,或 ForecastingHorizon,默认值=None

编码要预测的时间戳的预测范围。如果已在 fit 中传递,则不应再传递。如果未在 fit 中传递,则必须传递,不可选。

如果 fh 不是 None 且类型不是 ForecastingHorizon,它将在内部被强制转换为 ForecastingHorizon 类型 (通过 _check_fh)。

  • 如果 fhintint 的 array-like 类型,则被解释为相对预测期,并被强制转换为相对的 ForecastingHorizon(fh, is_relative=True)

  • 如果 fh 的类型是 pd.Index,则被解释为绝对预测期,并被强制转换为绝对的 ForecastingHorizon(fh, is_relative=False)

Xsktime 兼容格式的时间序列,可选(默认值=None)

用于预测的外生时间序列。应与 fit 中的 y 具有相同的 scitype(SeriesPanelHierarchical)。如果 self.get_tag("X-y-must-have-same-index")True,则 X.index 必须包含 fh 索引引用。

covbool 类型,可选 (默认值=False)

如果为 True,计算协方差矩阵预测。如果为 False,计算边际方差预测。

返回:
pred_varpd.DataFrame,格式取决于 cov 变量
如果 cov=False
列名与在 fit/update 中传递的 y 的列名完全相同。

对于无名格式,列索引将是 RangeIndex。

行索引是 fh,额外级别等于实例级别,

来自 fit 中看到的 y,如果 fit 中看到的 y 是 Panel 或 Hierarchical 类型。

条目是方差预测值,对于列索引中的变量。给定变量和 fh 索引的方差预测值是一个预测的

在给定观测数据下,该变量和索引的方差。

如果 cov=True
列索引是多级索引:第一级是变量名称(如上)

第二级是 fh。

行索引是 fh,额外级别等于实例级别,

来自 fit 中看到的 y,如果 fit 中看到的 y 是 Panel 或 Hierarchical 类型。

条目是(协)方差预测值,对于列索引中的变量,以及

行索引和列索引之间的时间索引的协方差。

注意:不同变量之间不返回协方差预测值。

reset()[source]#

将对象重置到干净的初始化后状态。

self 设置回构造函数调用后直接所处的状态,并保留相同的超参数。通过 set_config 设置的配置值也会被保留。

调用 reset 会删除任何对象属性,除了

  • 超参数 = __init__ 的参数,这些参数已写入 self 中,例如 self.paramname,其中 paramname__init__ 的一个参数

  • 包含双下划线字符串“__”的对象属性。例如,名为“__myattr”的属性会被保留。

  • 配置属性,配置会保持不变。也就是说,在 reset 之前和之后调用 get_config 的结果是相同的。

类和对象方法,以及类属性也不受影响。

等同于 clone,但 reset 会改变 self 的状态,而不是返回一个新对象。

调用 self.reset() 后,self 的值和状态将与通过构造函数调用``type(self)(**self.get_params(deep=False))`` 获得的对象相同。

返回:
self

类实例被重置到干净的初始化后状态,但保留当前的超参数值。

save(path=None, serialization_format='pickle')[source]#

将序列化对象保存到字节状对象或 (.zip) 文件。

行为:如果 path 为 None,返回一个内存中的序列化对象 self;如果 path 是文件位置,则将 self 保存为 zip 文件到该位置。

保存的文件是 zip 文件,包含以下内容: _metadata - 包含 self 的类,即 type(self) _obj - 序列化的 self。此类使用默认的序列化方式 (pickle)。

参数:
pathNone 或文件位置 (str 或 Path)

如果为 None,self 保存到内存对象;如果为文件位置,self 保存到该文件位置。例如,如果

  • path=”estimator”,则将在当前工作目录创建一个名为 estimator.zip 的 zip 文件。

  • path=”/home/stored/estimator”,则将在

存储在 /home/stored/ 中。

serialization_format: str 类型,默认值 = “pickle”

用于序列化的模块。可用选项有“pickle”和“cloudpickle”。请注意,非默认格式可能需要安装其他软依赖项。

返回:
如果 path 为 None - 内存中的序列化对象 self
如果 path 是文件位置 - ZipFile 对象,引用该文件
score(y, X=None, fh=None)[source]#

使用 MAPE(非对称)评估预测与真实值的得分。

参数:
ypd.Series, pd.DataFrame, 或 np.ndarray (1D 或 2D)

用于评分的时间序列

fhint, list, pd.Index 可强制转换,或 ForecastingHorizon,默认值=None

编码要预测的时间戳的预测范围。

Xpd.DataFrame, 或 2D np.array,可选 (默认值=None)

用于评分的外生时间序列。如果 self.get_tag(“X-y-must-have-same-index”) 为 True,则 X.index 必须包含 y.index。

返回:
scorefloat 类型

self.predict(fh, X) 相对于 y_test 的 MAPE (平均绝对百分比误差) 损失。

set_config(**config_dict)[source]#

将配置标志设置为给定值。

参数:
config_dictdict

配置名称 : 配置值 对的字典。有效的配置项、值及其含义列在下方

displaystr 类型,“diagram”(默认)或“text”

jupyter kernel 如何显示 self 的实例

  • “diagram” = HTML 框图表示

  • “text” = 字符串打印输出

print_changed_onlybool 类型,默认值=True

打印 self 时是仅列出与默认值不同的参数 (True),还是列出所有参数名称和值 (False)。不嵌套,即仅影响 self,不影响组件估计器。

warningsstr 类型,“on”(默认)或“off”

是否发出警告,仅影响 sktime 的警告

  • “on” = 将发出 sktime 的警告

  • “off” = 将不发出 sktime 的警告

backend:parallelstr 类型,可选,默认值=“None”

广播/向量化时用于并行化的后端,选项如下

  • “None”:顺序执行循环,简单的列表推导

  • “loky”、“multiprocessing”和“threading”:使用 joblib.Parallel

  • “joblib”:自定义和第三方 joblib 后端,例如 spark

  • “dask”:使用 dask,需要在环境中安装 dask

  • “ray”:使用 ray,需要在环境中安装 ray

backend:parallel:paramsdict 类型,可选,默认值={}(未传递参数)

作为配置传递给并行化后端的附加参数。有效键取决于 backend:parallel 的值

  • “None”:无附加参数,忽略 backend_params

  • “loky”、“multiprocessing”和“threading”:默认的 joblib 后端。可以传递任何有效的 joblib.Parallel 键,例如 n_jobs,但 backend 除外,它由 backend 直接控制。如果未传递 n_jobs,则默认为 -1,其他参数将默认为 joblib 的默认值。

  • “joblib”:自定义和第三方 joblib 后端,例如 spark。可以传递任何有效的 joblib.Parallel 键,例如 n_jobs,在这种情况下,backend 必须作为 backend_params 的一个键传递。如果未传递 n_jobs,则默认为 -1,其他参数将默认为 joblib 的默认值。

  • “dask”:可以传递任何有效的 dask.compute 键,例如 scheduler

  • “ray”:可以传递以下键

    • “ray_remote_args”:ray.init 的有效键字典

    • “shutdown_ray”:bool 类型,默认值=True;如果为 False,则阻止 ray

      在并行化后关闭。

    • “logger_name”:str 类型,默认值=“ray”;要使用的日志记录器名称。

    • “mute_warnings”:bool 类型,默认值=False;如果为 True,则抑制警告

remember_databool 类型,默认值=True

self._X 和 self._y 是否在 fit 中存储并在 update 中更新。如果为 True,则 self._X 和 self._y 被存储和更新。如果为 False,则 self._X 和 self._y 不被存储和更新。这在使用 save 时减小了序列化大小,但 update 将默认为“不执行任何操作”,而不是“重新拟合所有已见数据”。

返回:
self指向 self 的引用。

注意

改变对象状态,将 config_dict 中的配置复制到 self._config_dynamic。

set_params(**params)[source]#

设置此对象的参数。

此方法适用于简单的 skbase 对象以及复合对象。参数键字符串 <component>__<parameter> 可用于复合对象(即包含其他对象的对象),以访问组件 <component> 中的 <parameter>。如果引用 unambiguous,也可以使用不带 <component>__ 的字符串 <parameter>,例如,没有两个组件参数具有相同的名称 <parameter>

参数:
**paramsdict 类型

BaseObject 参数,键必须是 <component>__<parameter> 字符串。如果 __ 后缀在 get_params 键中唯一,则可以作为完整字符串的别名。

返回:
self指向 self 的引用(参数设置后)
set_random_state(random_state=None, deep=True, self_policy='copy')[source]#

为对象设置 random_state 伪随机种子参数。

通过 self.get_params 查找名为 random_state 的参数,并使用 set_params 将它们设置为从 random_state 派生的整数。这些整数通过 sample_dependent_seed 的链式哈希采样获得,并保证 seeded 随机生成器之间的伪随机独立性。

根据 self_policy 应用于 self 中的 random_state 参数,并且仅当 deep=True 时应用于其余组件对象。

注意:即使 self 没有 random_state 参数,或者没有任何组件具有 random_state 参数,也会调用 set_params。因此,set_random_state 会重置任何 scikit-base 对象,即使那些没有 random_state 参数的对象。

参数:
random_stateint, RandomState 实例或 None,默认值=None

伪随机数生成器,用于控制随机整数的生成。传递 int 值可在多次函数调用中获得可复现的输出。

deepbool, 默认值=True

是否设置 skbase 对象值参数(即组件估计器)中的 random state。

  • 如果为 False,则只设置 selfrandom_state 参数(如果存在)。

  • 如果为 True,则也会设置组件对象中的 random_state 参数。

self_policystr 类型,取值 {“copy”, “keep”, “new”} 之一,默认值=“copy”
  • “copy”:self.random_state 设置为输入的 random_state

  • “keep”:self.random_state 保持不变

  • “new”:self.random_state 设置为新的 random state,

从输入的 random_state 派生,通常与它不同

返回:
self指向 self 的引用
set_tags(**tag_dict)[source]#

将实例级别标签覆盖设置为给定值。

每个 scikit-base 兼容对象都有一个标签字典,用于存储关于对象的元数据。

Tag 是特定于实例 self 的键值对,它们是对象构造后不会更改的静态标志。它们可用于元数据检查,或控制对象的行为。

set_tags 将动态 tag 覆盖设置为 tag_dict 中指定的值,其中键是 tag 名称,字典值是要将 tag 设置为的值。

set_tags 方法只能在对象的 __init__ 方法中,或者通过 __init__ 直接构造后调用。

可以通过 get_tagsget_tag 检查当前标签值。

参数:
**tag_dictdict 类型

Tag 名称 : tag 值 对的字典。

返回:
Self

指向 self 的引用。

update(y, X=None, update_params=True)[source]#

更新截止点值,并且可选地更新拟合参数。

如果没有实现估计器特定的 update 方法,默认的回退行为如下

  • update_params=True:拟合目前为止所有观测到的数据

  • update_params=False:仅更新 cutoff 并记住数据

所需状态

要求状态为“已拟合”,即 self.is_fitted=True

访问 self 中的属性

  • 以“_”结尾的拟合模型属性。

  • self.cutoffself.is_fitted

写入 self

  • self.cutoff 更新为在 y 中看到的最新索引。

  • 如果 update_params=True,则更新以“_”结尾的拟合模型属性。

参数:
ysktime 兼容数据容器格式的时间序列。

用于更新预测器的时间序列。

sktime 中的个体数据格式称为 mtype 规范,每种 mtype 都实现了一个抽象的 scitype

  • Series scitype = 单个时间序列,普通预测。pd.DataFramepd.Seriesnp.ndarray(1D 或 2D)

  • Panel scitype = 时间序列集合,全局/面板预测。具有 2 级行 MultiIndex (instance, time)pd.DataFrame3D np.ndarray (instance, variable, time)Series 类型的 pd.DataFrame list

  • Hierarchical scitype = 分层集合,用于分层预测。具有 3 个或更多级别行 MultiIndex (hierarchy_1, ..., hierarchy_n, time)pd.DataFrame

有关数据格式的更多详细信息,请参阅 mtype 词汇表。有关用法,请参阅预测教程 examples/01_forecasting.ipynb

Xsktime 兼容格式的时间序列,可选(默认值=None)。

用于更新模型拟合的外生时间序列。应与 y 具有相同的 scitype 类型 (Series, Panel, 或 Hierarchical)。如果 self.get_tag("X-y-must-have-same-index") 为 True,则 X.index 必须包含 y.index

update_paramsbool 类型,可选 (默认值=True)

是否应更新模型参数。如果为 False,则仅更新 cutoff,模型参数(例如,系数)不更新。

返回:
self指向 self 的引用
update_predict(y, cv=None, X=None, update_params=True, reset_forecaster=True)[source]#

在测试集上迭代进行预测和模型更新。

简化调用流程,基于时间分割器 cv 执行一系列的 update / predict 调用。

与以下操作相同(如果只有 y, cv 非默认)

  1. self.update(y=cv.split_series(y)[0][0])

  2. 记住 self.predict() 的结果(稍后在单个批次中返回)

  3. self.update(y=cv.split_series(y)[1][0])

  4. 记住 self.predict() 的结果(稍后在单个批次中返回)

  5. 等等

  6. 返回所有记住的预测结果

如果没有实现估计器特定的 update 方法,默认的回退行为如下

  • update_params=True:拟合目前为止所有观测到的数据

  • update_params=False:仅更新 cutoff 并记住数据

所需状态

要求状态为“已拟合”,即 self.is_fitted=True

访问 self 中的属性

  • 以“_”结尾的拟合模型属性。

  • self.cutoffself.is_fitted

写回 self(除非 reset_forecaster=True
  • self.cutoff 更新为在 y 中看到的最新索引。

  • 如果 update_params=True,则更新以“_”结尾的拟合模型属性。

如果 reset_forecaster=True,则不更新状态。

参数:
ysktime 兼容数据容器格式的时间序列。

用于更新预测器的时间序列。

sktime 中的个体数据格式称为 mtype 规范,每种 mtype 都实现了一个抽象的 scitype

  • Series scitype = 单个时间序列,普通预测。pd.DataFramepd.Seriesnp.ndarray(1D 或 2D)

  • Panel scitype = 时间序列集合,全局/面板预测。具有 2 级行 MultiIndex (instance, time)pd.DataFrame3D np.ndarray (instance, variable, time)Series 类型的 pd.DataFrame list

  • Hierarchical scitype = 分层集合,用于分层预测。具有 3 个或更多级别行 MultiIndex (hierarchy_1, ..., hierarchy_n, time)pd.DataFrame

有关数据格式的更多详细信息,请参阅 mtype 词汇表。有关用法,请参阅预测教程 examples/01_forecasting.ipynb

cv继承自 BaseSplitter 的时间交叉验证生成器,可选

例如,SlidingWindowSplitterExpandingWindowSplitter;默认值 = 带有 initial_window=1 的 ExpandingWindowSplitter,并且默认为 y/X 中的单个数据点被逐个添加和预测,initial_window = 1step_length = 1 并且 fh = 1

Xsktime 兼容格式的时间序列,可选 (默认值=None)

用于更新和预测的外生时间序列。应与 fit 中的 y 具有相同的 scitype 类型 (Series, Panel, 或 Hierarchical)。如果 self.get_tag("X-y-must-have-same-index") 为 True,则 X.index 必须包含 fh 索引引用。

update_paramsbool 类型,可选 (默认值=True)

是否应更新模型参数。如果为 False,则仅更新 cutoff,模型参数(例如,系数)不更新。

reset_forecasterbool 类型,可选 (默认值=True)
  • 如果为 True,则不会改变预测器的状态,即 update/predict 序列是在一个副本上运行的,并且 self 的 cutoff、模型参数、数据内存都不改变

  • 如果为 False,则当 update/predict 序列运行时,self 将被更新,就像直接调用 update/predict 一样

返回:
y_pred用于以表格形式呈现来自多个分割批次点预测的对象

格式取决于整体预测的 (cutoff, absolute horizon) 对

  • 如果绝对预测期点的集合是唯一的:类型是 sktime 兼容数据容器格式的时间序列,输出中省略了 cutoff,类型与最近传递的 y 相同:Series, Panel, Hierarchical scitype 类型,格式相同(见上文)。

  • 如果绝对预测期点的集合不唯一:类型是 pandas DataFrame,行和列索引都是时间戳。行索引对应于用于预测的 cutoff,列索引对应于预测的绝对预测期。条目是从行索引(cutoff)预测的列索引(absolute horizon)的点预测值。如果在该 (cutoff, horizon) 对处没有进行预测,则条目为 nan。

update_predict_single(y=None, fh=None, X=None, update_params=True)[source]#

使用新数据更新模型并进行预测。

此方法对于一步完成更新和预测非常有用。

如果没有实现估计器特定的 update 方法,默认的回退行为是先更新,然后预测。

所需状态

要求状态为“已拟合”。

访问 self 中的属性

拟合模型的属性以“_”结尾。指向已见数据的指针,self._y 和 self.X self.cutoff, self._is_fitted。如果 update_params=True,则更新以“_”结尾的模型属性。

写入 self

通过追加行更新 self._y 和 self._X,使用 yX。将 self.cutoff 和 self._cutoff 更新为在 y 中看到的最后一个索引。如果 update_params=True,

更新以“_”结尾的拟合模型属性。

参数:
ysktime 兼容数据容器格式的时间序列。

用于更新预测器的时间序列。

sktime 中的个体数据格式称为 mtype 规范,每种 mtype 都实现了一个抽象的 scitype

  • Series scitype = 单个时间序列,普通预测。pd.DataFramepd.Seriesnp.ndarray(1D 或 2D)

  • Panel scitype = 时间序列集合,全局/面板预测。具有 2 级行 MultiIndex (instance, time)pd.DataFrame3D np.ndarray (instance, variable, time)Series 类型的 pd.DataFrame list

  • Hierarchical scitype = 分层集合,用于分层预测。具有 3 个或更多级别行 MultiIndex (hierarchy_1, ..., hierarchy_n, time)pd.DataFrame

有关数据格式的更多详细信息,请参阅 mtype 词汇表。有关用法,请参阅预测教程 examples/01_forecasting.ipynb

fhint, list, pd.Index 可强制转换,或 ForecastingHorizon,默认值=None

编码要预测的时间戳的预测范围。如果已在 fit 中传递,则不应再传递。如果未在 fit 中传递,则必须传递,不可选。

Xsktime 兼容格式的时间序列,可选 (默认值=None)

用于更新和预测的外生时间序列。应与 fit 中的 y 具有相同的 scitype 类型 (Series, Panel, 或 Hierarchical)。如果 self.get_tag("X-y-must-have-same-index") 为 True,则 X.index 必须包含 fh 索引引用。

update_paramsbool 类型,可选 (默认值=True)

是否应更新模型参数。如果为 False,则仅更新 cutoff,模型参数(例如,系数)不更新。

返回:
y_predsktime 兼容数据容器格式的时间序列

fh 处的点预测,与 fh 具有相同的索引。y_pred 与最近传递的 y 具有相同的类型:SeriesPanelHierarchical scitype,相同格式(见上文)