StationarityZivotAndrews#

class StationarityZivotAndrews(lags=None, trend='c', trim=0.15, max_lags=None, method='aic', p_threshold=0.05)[source]#

通过 Zivot-Andrews 单位根检验测试平稳性。

直接调用来自 arch 包的 ZivotAndrews 检验。

使用 arch.unitroot.ZivotAndrews 作为单位根检验,并判断时间序列是否平稳(布尔值结果)。

同时以拟合参数的形式返回单位根检验结果。

参数:
lagsint, 可选

ADF 回归中使用的滞后阶数。如果省略或为 None,则使用 method 自动选择滞后阶数,包含的滞后阶数不超过 max_lags

trend{“c”, “t”, “ct”}, 可选

检验中包含的趋势项

  • “c” - 包含一个常数项 (默认)

  • “t” - 包含一个线性时间趋势

  • “ct” - 包含一个常数项和一个线性时间趋势

trimfloat

从序列的开头/结尾排除用于断点计算的百分比,范围 [0, 0.333] (默认=0.15)

max_lagsint, 可选

选择滞后阶数时使用的最大滞后数量

method{“AIC”, “BIC”, “t-stat”}, 可选

选择滞后阶数时使用的方法

  • “AIC” - 选择 Akaike IC 的最小值

  • “BIC” - 选择 Schwarz/Bayesian IC 的最小值

  • “t-stat” - 选择 Schwarz/Bayesian IC 的最小值

属性:
stationary_bool, fit 中序列是否包含单位根

(包含结构性断点),更准确地说,Zivot-Andrews 检验的零假设在 p_threshold 水平上是否被拒绝

test_statistic_float

fit 中对 y 运行 ZivotAndrews 得到的 ZA 检验统计量

pvalue_float

fit 中对 y 运行 ZivotAndrews 时获得的 p 值

usedlag_int

检验中使用的滞后阶数。

示例

>>> from sktime.datasets import load_airline
>>> from sktime.param_est.stationarity import StationarityZivotAndrews
>>>
>>> X = load_airline()  
>>> sty_est = StationarityZivotAndrews()  
>>> sty_est.fit(X)  
StationarityZivotAndrews(...)
>>> sty_est.get_fitted_params()["stationary"]  
False

方法

check_is_fitted([method_name])

检查估计器是否已拟合。

clone()

获取一个具有相同超参数和配置的对象克隆。

clone_tags(estimator[, tag_names])

从另一个对象克隆标签作为动态覆盖。

create_test_instance([parameter_set])

使用第一个测试参数集构造类的实例。

create_test_instances_and_names([parameter_set])

创建所有测试实例列表及其名称列表。

fit(X[, y])

拟合估计器并估计参数。

get_class_tag(tag_name[, tag_value_default])

从类中获取类标签值,并包含来自父类的标签继承。

get_class_tags()

从类中获取类标签,并包含来自父类的标签继承。

get_config()

获取自身的配置标志。

get_fitted_params([deep])

获取拟合参数。

get_param_defaults()

获取对象的默认参数。

get_param_names([sort])

获取对象的参数名称。

get_params([deep])

获取此对象的参数值字典。

get_tag(tag_name[, tag_value_default, ...])

从实例中获取标签值,并包含标签级别继承和覆盖。

get_tags()

从实例中获取标签,并包含标签级别继承和覆盖。

get_test_params([parameter_set])

返回估计器的测试参数设置。

is_composite()

检查对象是否由其他 BaseObject 组成。

load_from_path(serial)

从文件位置加载对象。

load_from_serial(serial)

从序列化内存容器加载对象。

重置()

将对象重置到初始化后的干净状态。

save([path, serialization_format])

将序列化的自身保存到字节类对象或到 (.zip) 文件。

set_config(**config_dict)

将配置标志设置为给定值。

set_params(**params)

设置此对象的参数。

set_random_state([random_state, deep, ...])

为自身设置 random_state 伪随机种子参数。

set_tags(**tag_dict)

将实例级标签覆盖设置为给定值。

update(X[, y])

在更多数据上更新拟合参数。

classmethod get_test_params(parameter_set='default')[source]#

返回估计器的测试参数设置。

参数:
parameter_setstr, default=”default”

要返回的测试参数集的名称,用于测试。如果未为某个值定义特殊参数,将返回 "default" 集。参数估计器没有保留值。

返回:
paramsdict 或 dict 列表, default = {}

用于创建类测试实例的参数。每个字典都是用于构造一个“有趣的”测试实例的参数,即 MyClass(**params)MyClass(**params[i]) 创建一个有效的测试实例。create_test_instance 使用 params 中的第一个(或唯一的)字典。

check_is_fitted(method_name=None)[source]#

检查估计器是否已拟合。

检查 _is_fitted 属性是否存在且为 Trueis_fitted 属性应在调用对象的 fit 方法时设置为 True

如果不是,则引发 NotFittedError

参数:
method_namestr, 可选

调用此方法的名称。如果提供,错误消息将包含此信息。

引发:
NotFittedError

如果估计器尚未拟合。

clone()[source]#

获取一个具有相同超参数和配置的对象克隆。

克隆是一个没有共享引用的不同对象,处于初始化后状态。此函数等效于返回 selfsklearn.clone

等效于构造一个 type(self) 的新实例,使用 self 的参数,即 type(self)(**self.get_params(deep=False))

如果 self 上设置了配置,克隆也将具有与原始对象相同的配置,等效于调用 cloned_self.set_config(**self.get_config())

在值上也等效于调用 self.reset,不同之处在于 clone 返回一个新对象,而不是像 reset 那样改变 self

引发:
如果由于错误的 __init__ 导致克隆不符合规范,则引发 RuntimeError。
clone_tags(estimator, tag_names=None)[source]#

从另一个对象克隆标签作为动态覆盖。

每个与 scikit-base 兼容的对象都有一个标签字典。标签可用于存储对象的元数据或控制对象的行为。

标签是特定于实例 self 的键值对,它们是对象构造后不会改变的静态标志。

clone_tags 从另一个对象 estimator 设置动态标签覆盖。

clone_tags 方法应仅在对象的 __init__ 方法中调用,即在构造期间或通过 __init__ 直接在构造之后调用。

动态标签设置为 estimator 中标签的值,名称由 tag_names 指定。

tag_names 的默认行为是将 estimator 中的所有标签写入 self

当前标签值可以通过 get_tagsget_tag 查看。

参数:
estimator:class:BaseObject 或其派生类的实例
tag_namesstr 或 str 列表, default = None

要克隆的标签名称。默认值 (None) 克隆 estimator 中的所有标签。

返回:
self

self 的引用。

classmethod create_test_instance(parameter_set='default')[source]#

使用第一个测试参数集构造类的实例。

参数:
parameter_setstr, default=”default”

要返回的测试参数集的名称,用于测试。如果未为某个值定义特殊参数,将返回 “default” 集。

返回:
instance具有默认参数的类实例
classmethod create_test_instances_and_names(parameter_set='default')[source]#

创建所有测试实例列表及其名称列表。

参数:
parameter_setstr, default=”default”

要返回的测试参数集的名称,用于测试。如果未为某个值定义特殊参数,将返回 “default” 集。

返回:
objscls 实例列表

第 i 个实例是 cls(**cls.get_test_params()[i])

namesstr 列表, 与 objs 长度相同

第 i 个元素是测试中 obj 的第 i 个实例的名称。如果实例不止一个,命名约定为 {cls.__name__}-{i},否则为 {cls.__name__}

fit(X, y=None)[source]#

拟合估计器并估计参数。

状态改变

将状态更改为“fitted”。

写入自身

将 self._is_fitted 标志设置为 True。将 X 写入 self._X。如果 y 不为 None,则将 y 写入 self._y。设置以“_”结尾的拟合模型属性。

参数:
Xsktime 兼容数据容器格式的时间序列。

用于拟合参数估计器的时间序列。

sktime 中的个体数据格式是所谓的 mtype 规范,每个 mtype 实现一个抽象的 scitype

  • Series scitype = 个体时间序列,普通预测。pd.DataFrame, pd.Series, 或 np.ndarray (1D 或 2D)

  • Panel scitype = 时间序列集合,全局/面板预测。具有两级行 MultiIndex (instance, time)pd.DataFrame3D np.ndarray (instance, variable, time)list 类型为 Seriespd.DataFrame

  • Hierarchical scitype = 分层集合,用于分层预测。具有 3 级或更多级行 MultiIndex (hierarchy_1, ..., hierarchy_n, time)pd.DataFrame

估计器是否支持面板或分层数据由 scitype 标签 scitype:Xscitype:y 决定。

有关数据格式的更多详细信息,请参阅关于 mtype 的术语表。

ysktime 兼容数据容器格式的时间序列。

用于拟合参数估计器的第二个时间序列。

仅当估计器是成对估计器时才需要,即如果标签 capability:pairwise 为 True。

否则输入将被忽略,并且不会抛出异常。

返回:
self对自身的引用。
classmethod get_class_tag(tag_name, tag_value_default=None)[source]#

从类中获取类标签值,并包含来自父类的标签继承。

每个与 scikit-base 兼容的对象都有一个标签字典,用于存储对象的元数据。

get_class_tag 方法是一个类方法,它仅考虑类级别的标签值和覆盖来检索标签的值。

它返回对象中名称为 tag_name 的标签的值,考虑了标签覆盖,优先级从高到低如下:

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按继承顺序。

不考虑通过实例上定义的 set_tagsclone_tags 设置的动态标签覆盖。

要检索可能包含实例覆盖的标签值,请改用 get_tag 方法。

参数:
tag_namestr

标签值的名称。

tag_value_default任意类型,可选;默认值=None

如果未找到标签,则使用的默认/回退值。

返回:
tag_value

selftag_name 标签的值。如果未找到,则返回 tag_value_default

classmethod get_class_tags()[source]#

从类中获取类标签,并包含来自父类的标签继承。

每个与 scikit-base 兼容的对象都有一个标签字典。标签可用于存储对象的元数据或控制对象的行为。

标签是特定于实例 self 的键值对,它们是对象构造后不会改变的静态标志。

get_class_tags 方法是一个类方法,它返回一个标签字典,键是类或其任何父类中设置的任何 _tags 属性的键,或者通过 set_tagsclone_tags 设置的标签。

它返回一个字典,键是类或其任何父类中设置的任何 _tags 属性的键。

值是相应的标签值,覆盖优先级从高到低如下:

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按继承顺序。

实例可以根据超参数覆盖这些标签。

要检索可能包含实例覆盖的标签,请改用 get_tags 方法。

不考虑通过实例上定义的 set_tagsclone_tags 设置的动态标签覆盖。

要包含来自动态标签的覆盖,请使用 get_tags

collected_tagsdict

标签名称 : 标签值 对的字典。通过嵌套继承从 _tags 类属性收集。不会被通过 set_tagsclone_tags 设置的动态标签覆盖。

get_config()[source]#

获取自身的配置标志。

配置是 self 的键值对,通常用作控制行为的临时标志。

get_config 返回动态配置,这些配置覆盖了默认配置。

默认配置在类或其父类的类属性 _config 中设置,并通过 set_config 设置的动态配置覆盖。

配置在 clonereset 调用时保留。

返回:
config_dictdict

配置名称 : 配置值 对的字典。通过嵌套继承从 _config 类属性收集,然后包含 _onfig_dynamic 对象属性中的任何覆盖和新标签。

get_fitted_params(deep=True)[source]#

获取拟合参数。

所需状态

要求状态为“fitted”。

参数:
deepbool, default=True

是否返回组件的拟合参数。

  • 如果为 True,将返回此对象的参数名称 : 值字典,包括可拟合组件(= BaseEstimator 类型参数)的拟合参数。

  • 如果为 False,将返回此对象的参数名称 : 值字典,但不包括组件的拟合参数。

返回:
fitted_params键为 str 类型的 dict

拟合参数字典,paramname : paramvalue 键值对包括

  • 始终:此对象的所有拟合参数,如通过 get_param_names 获取的值是此对象该键的拟合参数值

  • 如果 deep=True,还包含组件参数的键/值对,组件的参数索引方式为 [componentname]__[paramname]componentname 的所有参数都以 paramname 及其值的形式出现

  • 如果 deep=True,还包含任意级别的组件递归,例如 [componentname]__[componentcomponentname]__[paramname]

classmethod get_param_defaults()[source]#

获取对象的默认参数。

返回:
default_dict: dict[str, Any]

键是 cls 中所有在 __init__ 中定义了默认值的参数。值是在 __init__ 中定义的默认值。

classmethod get_param_names(sort=True)[source]#

获取对象的参数名称。

参数:
sortbool, default=True

是否按字母顺序返回参数名称 (True),或者按它们在类 __init__ 中出现的顺序返回 (False)。

返回:
param_names: list[str]

cls 的参数名称列表。如果 sort=False,则按它们在类 __init__ 中出现的相同顺序排列。如果 sort=True,则按字母顺序排列。

get_params(deep=True)[source]#

获取此对象的参数值字典。

参数:
deepbool, default=True

是否返回组件的参数。

  • 如果为 True,将返回此对象的参数名称 : 值 dict,包括组件(= BaseObject 类型参数)的参数。

  • 如果为 False,将返回此对象的参数名称 : 值 dict,但不包括组件的参数。

返回:
params键为 str 类型的 dict

参数字典,paramname : paramvalue 键值对包括

  • 始终:此对象的所有参数,如通过 get_param_names 获取的值是此对象该键的参数值,值始终与构造时传递的值相同

  • 如果 deep=True,还包含组件参数的键/值对,组件的参数索引方式为 [componentname]__[paramname]componentname 的所有参数都以 paramname 及其值的形式出现

  • 如果 deep=True,还包含任意级别的组件递归,例如 [componentname]__[componentcomponentname]__[paramname]

get_tag(tag_name, tag_value_default=None, raise_error=True)[source]#

从实例中获取标签值,并包含标签级别继承和覆盖。

每个与 scikit-base 兼容的对象都有一个标签字典。标签可用于存储对象的元数据或控制对象的行为。

标签是特定于实例 self 的键值对,它们是对象构造后不会改变的静态标志。

get_tag 方法从实例中检索名称为 tag_name 的单个标签的值,考虑了标签覆盖,优先级从高到低如下:

  1. 通过实例上的 set_tagsclone_tags 设置的标签,

在实例构造时。

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按继承顺序。

参数:
tag_namestr

要检索的标签名称

tag_value_default任意类型,可选;默认值=None

如果未找到标签,则使用的默认/回退值

raise_errorbool

当未找到标签时是否引发 ValueError

返回:
tag_valueAny

selftag_name 标签的值。如果未找到,并且 raise_error 为 True,则引发错误,否则返回 tag_value_default

引发:
ValueError,如果 raise_errorTrue

如果 tag_name 不在 self.get_tags().keys() 中,则会引发 ValueError

get_tags()[source]#

从实例中获取标签,并包含标签级别继承和覆盖。

每个与 scikit-base 兼容的对象都有一个标签字典。标签可用于存储对象的元数据或控制对象的行为。

标签是特定于实例 self 的键值对,它们是对象构造后不会改变的静态标志。

get_tags 方法返回一个标签字典,键是类或其任何父类中设置的任何 _tags 属性的键,或者通过 set_tagsclone_tags 设置的标签。

值是相应的标签值,覆盖优先级从高到低如下:

  1. 通过实例上的 set_tagsclone_tags 设置的标签,

在实例构造时。

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按继承顺序。

返回:
collected_tagsdict

标签名称 : 标签值 对的字典。通过嵌套继承从 _tags 类属性收集,然后包含 _tags_dynamic 对象属性中的任何覆盖和新标签。

is_composite()[source]#

检查对象是否由其他 BaseObject 组成。

复合对象是指包含其他对象作为参数的对象。在实例上调用,因为这可能因实例而异。

返回:
composite: bool

对象是否具有任何参数的值是 BaseObject 的后代实例。

property is_fitted[source]#

是否已调用 fit

检查对象的 _is_fitted 属性,该属性应在对象构造期间初始化为 False,并在调用对象的 fit 方法时设置为 True。

返回:
bool

估计器是否已 fit

classmethod load_from_path(serial)[source]#

从文件位置加载对象。

参数:
serialZipFile(path).open(“object) 的结果
返回:
反序列化的自身,结果输出到 path,即 cls.save(path) 的输出
classmethod load_from_serial(serial)[source]#

从序列化内存容器加载对象。

参数:
serialcls.save(None) 输出的第一个元素
返回:
反序列化的自身,结果输出 serial,即 cls.save(None) 的输出
reset()[source]#

将对象重置到初始化后的干净状态。

self 设置为构造函数调用后的状态,具有相同的超参数。通过 set_config 设置的配置值也会被保留。

调用 reset 会删除所有对象属性,除了

  • 超参数 = 写入 self__init__ 参数,例如 self.paramname,其中 paramname__init__ 的参数

  • 包含双下划线的对象属性,即字符串“__”。例如,名为“__myattr”的属性将被保留。

  • 配置属性,配置会保留且不变。也就是说,在 reset 之前和之后调用 get_config 的结果是相同的。

类方法和对象方法,以及类属性也不会受到影响。

等效于 clone,不同之处在于 reset 改变了 self,而不是返回一个新对象。

在调用 self.reset() 后,self 在值和状态上与构造函数调用后获得的对象相同``type(self)(**self.get_params(deep=False))``。

返回:
self

类的实例重置到干净的初始化后状态,但保留当前的超参数值。

save(path=None, serialization_format='pickle')[source]#

将序列化的自身保存到字节类对象或到 (.zip) 文件。

行为:如果 path 为 None,则返回序列化后的自身(驻留在内存中);如果 path 是文件位置,则将自身存储在该位置,作为 zip 文件。

保存的文件是包含以下内容的 zip 文件: _metadata - 包含自身的类,即 type(self) _obj - 序列化后的自身。该类使用默认的序列化方式 (pickle)。

参数:
pathNone 或文件位置 (str 或 Path)

如果为 None,自身将被保存为驻留在内存中的对象;如果为文件位置,自身将被保存到该文件位置。

  • 如果 path=”estimator”,则将在当前工作目录 (cwd) 生成一个名为 estimator.zip 的 zip 文件。

  • 如果 path=”/home/stored/estimator”,则名为 estimator.zip 的 zip 文件将

存储在 /home/stored/ 中。

serialization_format:字符串,默认为 “pickle”

用于序列化的模块。可用选项为 “pickle” 和 “cloudpickle”。请注意,非默认格式可能需要安装其他软依赖项。

返回:
如果 path 为 None - 驻留在内存中的序列化自身
如果 path 是文件位置 - 指向该文件的 ZipFile
set_config(**config_dict)[source]#

将配置标志设置为给定值。

参数:
config_dictdict

配置名称与配置值配对的字典。有效的配置、值及其含义列在下面。

display字符串,“diagram”(默认),或“text”

Jupyter 内核如何显示自身的实例

  • “diagram” = html 框图表示

  • “text” = 字符串打印输出

print_changed_only布尔值,默认为 True

打印自身时是否仅列出与默认值不同的自身参数 (False),或列出所有参数名称和值 (False)。不嵌套,即仅影响自身,而不影响组件估计器。

warnings字符串,“on”(默认),或“off”

是否引发警告,仅影响来自 sktime 的警告

  • “on” = 将引发来自 sktime 的警告

  • “off” = 不会引发来自 sktime 的警告

backend:parallel字符串,可选,默认为“None”

广播/向量化时用于并行化的后端,选项之一为:

  • “None”:按顺序执行循环,简单的列表推导式

  • “loky”、“multiprocessing”和“threading”:使用 joblib.Parallel

  • “joblib”:自定义和第三方 joblib 后端,例如 spark

  • “dask”:使用 dask,需要环境中安装 dask

  • “ray”:使用 ray,需要环境中安装 ray

backend:parallel:params字典,可选,默认为 {} (未传递参数)

作为配置传递给并行化后端的附加参数。有效键取决于 backend:parallel 的值。

  • “None”:无附加参数,忽略 backend_params

  • “loky”、“multiprocessing”和“threading”:默认的 joblib 后端,此处可以传递 joblib.Parallel 的任何有效键,例如 n_jobs,但 backend 除外,后者直接由 backend 控制。如果未传递 n_jobs,则默认为 -1,其他参数将默认为 joblib 的默认值。

  • “joblib”:自定义和第三方 joblib 后端,例如 spark。此处可以传递 joblib.Parallel 的任何有效键,例如 n_jobs;在这种情况下,backend 必须作为 backend_params 的一个键传递。如果未传递 n_jobs,则默认为 -1,其他参数将默认为 joblib 的默认值。

  • “dask”:可以传递 dask.compute 的任何有效键,例如 scheduler

  • “ray”:可以传递以下键

    • “ray_remote_args”:ray.init 的有效键字典

    • “shutdown_ray”:布尔值,默认为 True;False 可防止 ray 在并行化后关闭。

      关闭。

    • “logger_name”:字符串,默认为“ray”;要使用的日志记录器名称。

    • “mute_warnings”:布尔值,默认为 False;如果为 True,则抑制警告

返回:
self对自身的引用。

注意

更改对象状态,将 config_dict 中的配置复制到 self._config_dynamic。

set_params(**params)[source]#

设置此对象的参数。

此方法对简单的 skbase 对象以及复合对象均有效。参数键字符串 <component>__<parameter> 可用于复合对象(即包含其他对象的对象),以访问组件 <component> 中的 <parameter>。如果引用明确,也可以使用不带 <component>__ 的字符串 <parameter>,例如,没有两个组件参数名称都为 <parameter>

参数:
**params字典

BaseObject 参数,键必须是 <component>__<parameter> 字符串。__ 后缀可以在 get_params 键中唯一时作为完整字符串的别名。

返回:
self对自身的引用(设置参数后)
set_random_state(random_state=None, deep=True, self_policy='copy')[source]#

为自身设置 random_state 伪随机种子参数。

通过 self.get_params 查找名为 random_state 的参数,并通过 set_params 将它们设置为从 random_state 派生的整数。这些整数通过 sample_dependent_seed 从链式哈希中采样,并保证种子随机生成器具有伪随机独立性。

取决于 self_policy,适用于 self 中的 random_state 参数,并且当且仅当 deep=True 时适用于剩余的组件对象。

注意:即使 self 没有 random_state 参数,或者任何组件都没有 random_state 参数,也会调用 set_params。因此,set_random_state 将重置任何 scikit-base 对象,即使是那些没有 random_state 参数的对象。

参数:
random_state整数、RandomState 实例或 None,默认为 None

伪随机数生成器,用于控制随机整数的生成。传递整数可在多次函数调用中获得可重现的输出。

deepbool, default=True

是否在 skbase 对象值的参数中设置随机状态,即组件估计器。

  • 如果为 False,则仅设置 selfrandom_state 参数(如果存在)。

  • 如果为 True,则也会在组件对象中设置 random_state 参数。

self_policy字符串,{“copy”,“keep”,“new”} 之一,默认为“copy”
  • “copy”:self.random_state 设置为输入的 random_state

  • “keep”:self.random_state 保持原样

  • “new”:self.random_state 设置为一个新的随机状态,

由输入的 random_state 派生,并且通常与它不同。

返回:
self对自身的引用
set_tags(**tag_dict)[source]#

将实例级标签覆盖设置为给定值。

每个与 scikit-base 兼容的对象都有一个标签字典,用于存储对象的元数据。

标签是特定于实例 self 的键值对,它们是创建对象后不更改的静态标志。它们可用于元数据检查或控制对象行为。

set_tags 将动态标签覆盖设置为 tag_dict 中指定的值,其中键是标签名称,字典值是要设置的标签值。

应仅在对象的 __init__ 方法中(构造期间)或通过 __init__ 直接在构造后调用 set_tags 方法。

当前标签值可以通过 get_tagsget_tag 查看。

参数:
**tag_dict字典

标签名称与标签值配对的字典。

返回:
自身

对自身的引用。

update(X, y=None)[source]#

在更多数据上更新拟合参数。

如果未实现估计器特定的更新方法,则默认回退方案是拟合到迄今为止所有观察到的数据。

所需状态

要求状态为“fitted”。

访问自身中的

以 “_” 结尾的已拟合模型属性。指向已见数据的指针,self._X self._is_fitted 以 “_” 结尾的模型属性。

写入自身

通过追加行来更新 self._X,并使用 X。更新以 “_” 结尾的已拟合模型属性。

参数:
Xsktime 兼容数据容器格式的时间序列。

用于拟合参数估计器的时间序列。

sktime 中的个体数据格式是所谓的 mtype 规范,每个 mtype 实现一个抽象的 scitype

  • Series scitype = 个体时间序列,普通预测。pd.DataFrame, pd.Series, 或 np.ndarray (1D 或 2D)

  • Panel scitype = 时间序列集合,全局/面板预测。具有两级行 MultiIndex (instance, time)pd.DataFrame3D np.ndarray (instance, variable, time)list 类型为 Seriespd.DataFrame

  • Hierarchical scitype = 分层集合,用于分层预测。具有 3 级或更多级行 MultiIndex (hierarchy_1, ..., hierarchy_n, time)pd.DataFrame

估计器是否支持面板或分层数据由 scitype 标签 scitype:Xscitype:y 决定。

有关数据格式的更多详细信息,请参阅关于 mtype 的术语表。

ysktime 兼容数据容器格式的时间序列。

用于拟合参数估计器的第二个时间序列。

仅当估计器是成对估计器时才需要,即如果标签 capability:pairwise 为 True。

否则输入将被忽略,并且不会抛出异常。

返回:
self对自身的引用