BaseClassifier#
- class BaseClassifier[source]#
时间序列分类器的抽象基类。
基分类器指定了所有分类器必须实现的方法和方法签名。带下划线后缀的属性在 fit 方法中设置。
- 参数:
- 属性:
is_fitted
是否已调用
fit
。
方法
check_is_fitted
([method_name])检查估计器是否已拟合。
clone
()获取具有相同超参数和配置的对象的克隆。
clone_tags
(estimator[, tag_names])克隆另一个对象的标签作为动态覆盖。
create_test_instance
([parameter_set])使用第一个测试参数集构建类实例。
create_test_instances_and_names
([parameter_set])创建所有测试实例的列表及其名称列表。
fit
(X, y)将时间序列分类器拟合到训练数据。
fit_predict
(X, y[, cv, change_state])拟合并预测 X 中序列的标签。
fit_predict_proba
(X, y[, cv, change_state])拟合并预测 X 中序列的标签概率。
get_class_tag
(tag_name[, tag_value_default])从类中获取类标签值,具有来自父类的标签级别继承。
从类中获取类标签,具有来自父类的标签级别继承。
获取 self 的配置标志。
get_fitted_params
([deep])获取拟合参数。
获取对象的参数默认值。
get_param_names
([sort])获取对象的参数名称。
get_params
([deep])获取此对象的参数值字典。
get_tag
(tag_name[, tag_value_default, ...])从实例中获取标签值,具有标签级别继承和覆盖。
get_tags
()从实例中获取标签,具有标签级别继承和覆盖。
get_test_params
([parameter_set])返回估计器的测试参数设置。
检查对象是否由其他 BaseObjects 组成。
load_from_path
(serial)从文件位置加载对象。
load_from_serial
(serial)从序列化内存容器加载对象。
predict
(X)预测 X 中序列的标签。
预测 X 中序列的标签概率。
reset
()将对象重置到干净的初始化后状态。
save
([path, serialization_format])将序列化的 self 保存到字节类对象或 (.zip) 文件。
score
(X, y)评估预测标签与 X 上真实标签的得分。
set_config
(**config_dict)将配置标志设置为给定值。
set_params
(**params)设置此对象的参数。
set_random_state
([random_state, deep, ...])设置 self 的 random_state 伪随机种子参数。
set_tags
(**tag_dict)将实例级别标签覆盖设置为给定值。
- fit(X, y)[source]#
将时间序列分类器拟合到训练数据。
- 状态变更
将状态更改为“fitted”。
- 写入 self
将 self.is_fitted 设置为 True。设置以“_”结尾的拟合模型属性。
- 参数:
- Xsktime 兼容的时间序列面板数据容器,Panel scitype
用于拟合估计器的时间序列。
可以是
Panel
scitype 的任何 mtype,例如pd-multiindex: pd.DataFrame,列=变量,索引=pd.MultiIndex,第一层=实例索引,第二层=时间索引
numpy3D: 3D np.array (任意维数,等长序列),形状为 [n_instances, n_dimensions, series_length]
或任何其他支持的
Panel
mtype
有关 mtypes 列表,请参阅
datatypes.SCITYPE_REGISTER
有关规范,请参阅
examples/AA_datatypes_and_datasets.ipynb
并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅标签参考。
- ysktime 兼容的表格数据容器,Table scitype
1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions],用于拟合的类别标签 0-th 索引对应于 X 中的实例索引 1-st 索引(如果适用)对应于 X 中的多输出向量索引 支持的 sktime 类型:np.ndarray (1D, 2D), pd.Series, pd.DataFrame
- 返回:
- self对 self 的引用。
- predict(X)[source]#
预测 X 中序列的标签。
- 参数:
- Xsktime 兼容的时间序列面板数据容器,Panel scitype
用于预测标签的时间序列。
可以是
Panel
scitype 的任何 mtype,例如pd-multiindex: pd.DataFrame,列=变量,索引=pd.MultiIndex,第一层=实例索引,第二层=时间索引
numpy3D: 3D np.array (任意维数,等长序列),形状为 [n_instances, n_dimensions, series_length]
或任何其他支持的
Panel
mtype
有关 mtypes 列表,请参阅
datatypes.SCITYPE_REGISTER
有关规范,请参阅
examples/AA_datatypes_and_datasets.ipynb
并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅标签参考。
- 返回:
- y_predsktime 兼容的表格数据容器,Table scitype
预测的类别标签
1D 可迭代对象,形状为 [n_instances],或 2D 可迭代对象,形状为 [n_instances, n_dimensions]。
0-th 索引对应于 X 中的实例索引,1-st 索引(如果适用)对应于 X 中的多输出向量索引。
如果 y 是单变量(一维),则为 1D np.ndarray;否则,与 fit 中传递的 y 类型相同
- predict_proba(X)[source]#
预测 X 中序列的标签概率。
- 参数:
- Xsktime 兼容的时间序列面板数据容器,Panel scitype
用于预测标签的时间序列。
可以是
Panel
scitype 的任何 mtype,例如pd-multiindex: pd.DataFrame,列=变量,索引=pd.MultiIndex,第一层=实例索引,第二层=时间索引
numpy3D: 3D np.array (任意维数,等长序列),形状为 [n_instances, n_dimensions, series_length]
或任何其他支持的
Panel
mtype
有关 mtypes 列表,请参阅
datatypes.SCITYPE_REGISTER
有关规范,请参阅
examples/AA_datatypes_and_datasets.ipynb
并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅标签参考。
- 返回:
- y_pred2D np.array of int,形状为 [n_instances, n_classes]
预测的类别标签概率 0-th 索引对应于 X 中的实例索引 1-st 索引对应于类别索引,顺序与 self.classes_ 中的顺序相同 条目为预测的类别概率,总和为 1
- fit_predict(X, y, cv=None, change_state=True)[source]#
拟合并预测 X 中序列的标签。
方便的方法,用于生成样本内预测和交叉验证的样本外预测。
- 如果 change_state=True,则写入 self
将 self.is_fitted 设置为 True。设置以“_”结尾的拟合模型属性。
如果 change_state=False,则不更新状态。
- 参数:
- Xsktime 兼容的时间序列面板数据容器,Panel scitype
用于拟合和预测标签的时间序列。
可以是
Panel
scitype 的任何 mtype,例如pd-multiindex: pd.DataFrame,列=变量,索引=pd.MultiIndex,第一层=实例索引,第二层=时间索引
numpy3D: 3D np.array (任意维数,等长序列),形状为 [n_instances, n_dimensions, series_length]
或任何其他支持的
Panel
mtype
有关 mtypes 列表,请参阅
datatypes.SCITYPE_REGISTER
有关规范,请参阅
examples/AA_datatypes_and_datasets.ipynb
并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅标签参考。
- ysktime 兼容的表格数据容器,Table scitype
1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions],用于拟合的类别标签 0-th 索引对应于 X 中的实例索引 1-st 索引(如果适用)对应于 X 中的多输出向量索引 支持的 sktime 类型:np.ndarray (1D, 2D), pd.Series, pd.DataFrame
- cvNone, int, 或 sklearn 交叉验证对象,可选,默认=None
None:预测为样本内预测,等同于
fit(X, y).predict(X)
cv:预测等同于
fit(X_train, y_train).predict(X_test)
,其中多个X_train
、y_train
、X_test
从cv
折叠中获取。返回的y
是所有测试折叠预测的并集,cv
测试折叠必须不相交int:等同于
cv=KFold(cv, shuffle=True, random_state=x)
,即 k 折交叉验证的样本外预测,其中random_state
x
取自self
(如果存在),否则x=None
- change_statebool,可选(默认=True)
如果为 False,则不会更改分类器的状态,即 fit/predict 序列使用副本运行,self 不会改变
如果为 True,则会将 self 拟合到完整的 X 和 y,最终状态将等同于运行 fit(X, y)
- 返回:
- y_predsktime 兼容的表格数据容器,Table scitype
预测的类别标签
1D 可迭代对象,形状为 [n_instances],或 2D 可迭代对象,形状为 [n_instances, n_dimensions]。
0-th 索引对应于 X 中的实例索引,1-st 索引(如果适用)对应于 X 中的多输出向量索引。
如果 y 是单变量(一维),则为 1D np.ndarray;否则,与 fit 中传递的 y 类型相同
- fit_predict_proba(X, y, cv=None, change_state=True)[source]#
拟合并预测 X 中序列的标签概率。
方便的方法,用于生成样本内预测和交叉验证的样本外预测。
- 如果 change_state=True,则写入 self
将 self.is_fitted 设置为 True。设置以“_”结尾的拟合模型属性。
如果 change_state=False,则不更新状态。
- 参数:
- Xsktime 兼容的时间序列面板数据容器,Panel scitype
用于拟合和预测标签的时间序列。
可以是
Panel
scitype 的任何 mtype,例如pd-multiindex: pd.DataFrame,列=变量,索引=pd.MultiIndex,第一层=实例索引,第二层=时间索引
numpy3D: 3D np.array (任意维数,等长序列),形状为 [n_instances, n_dimensions, series_length]
或任何其他支持的
Panel
mtype
有关 mtypes 列表,请参阅
datatypes.SCITYPE_REGISTER
有关规范,请参阅
examples/AA_datatypes_and_datasets.ipynb
并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅标签参考。
- ysktime 兼容的表格数据容器,Table scitype
1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions],用于拟合的类别标签 0-th 索引对应于 X 中的实例索引 1-st 索引(如果适用)对应于 X 中的多输出向量索引 支持的 sktime 类型:np.ndarray (1D, 2D), pd.Series, pd.DataFrame
- cvNone, int, 或 sklearn 交叉验证对象,可选,默认=None
None:预测为样本内预测,等同于
fit(X, y).predict(X)
cv:预测等同于
fit(X_train, y_train).predict(X_test)
,其中多个X_train
、y_train
、X_test
从cv
折叠中获取。返回的y
是所有测试折叠预测的并集,cv
测试折叠必须不相交int:等同于
cv=KFold(cv, shuffle=True, random_state=x)
,即 k 折交叉验证的样本外预测,其中random_state
x
取自self
(如果存在),否则x=None
- change_statebool,可选(默认=True)
如果为 False,则不会更改分类器的状态,即 fit/predict 序列使用副本运行,self 不会改变
如果为 True,则会将 self 拟合到完整的 X 和 y,最终状态将等同于运行 fit(X, y)
- 返回:
- y_pred2D np.array of int,形状为 [n_instances, n_classes]
预测的类别标签概率 0-th 索引对应于 X 中的实例索引 1-st 索引对应于类别索引,顺序与 self.classes_ 中的顺序相同 条目为预测的类别概率,总和为 1
- score(X, y) float [source]#
评估预测标签与 X 上真实标签的得分。
- 参数:
- Xsktime 兼容的时间序列面板数据容器,Panel scitype
用于评估预测标签的时间序列。
可以是
Panel
scitype 的任何 mtype,例如pd-multiindex: pd.DataFrame,列=变量,索引=pd.MultiIndex,第一层=实例索引,第二层=时间索引
numpy3D: 3D np.array (任意维数,等长序列),形状为 [n_instances, n_dimensions, series_length]
或任何其他支持的
Panel
mtype
有关 mtypes 列表,请参阅
datatypes.SCITYPE_REGISTER
有关规范,请参阅
examples/AA_datatypes_and_datasets.ipynb
并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅标签参考。
- ysktime 兼容的表格数据容器,Table scitype
1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions],用于拟合的类别标签 0-th 索引对应于 X 中的实例索引 1-st 索引(如果适用)对应于 X 中的多输出向量索引 支持的 sktime 类型:np.ndarray (1D, 2D), pd.Series, pd.DataFrame
- 返回:
- float,predict(X) 与 y 相比的准确率得分
- classmethod get_test_params(parameter_set='default')[source]#
返回估计器的测试参数设置。
- 参数:
- parameter_setstr,默认=”default”
要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回
"default"
集。对于分类器,应提供一组“default”参数用于一般测试,以及一组“results_comparison”参数用于与先前记录的结果进行比较(如果一般参数集未能生成合适的概率进行比较)。
- 返回:
- paramsdict 或 list of dict,默认={}
用于创建类测试实例的参数。每个 dict 都是用于构建“有趣”测试实例的参数,即
MyClass(**params)
或MyClass(**params[i])
创建一个有效的测试实例。create_test_instance
使用params
中的第一个(或唯一一个)字典。
- check_is_fitted(method_name=None)[source]#
检查估计器是否已拟合。
检查
_is_fitted
属性是否存在且为True
。is_fitted
属性应在对象的fit
方法调用中设置为True
。如果不是,则抛出
NotFittedError
。- 参数:
- method_namestr,可选
调用此函数的方法的名称。如果提供,错误消息将包含此信息。
- 抛出:
- NotFittedError
如果估计器尚未拟合。
- clone()[source]#
获取具有相同超参数和配置的对象的克隆。
克隆是一个没有共享引用、处于初始化后状态的不同对象。此函数等效于返回
self
的sklearn.clone
。等同于构建一个
type(self)
的新实例,具有self
的参数,即type(self)(**self.get_params(deep=False))
。如果在
self
上设置了配置,则克隆也将具有与原始对象相同的配置,等同于调用cloned_self.set_config(**self.get_config())
。其值也等同于调用
self.reset
,但clone
返回一个新对象,而不是像reset
那样修改self
。- 抛出:
- 如果由于
__init__
的错误导致克隆不一致,则会发生 RuntimeError。
- 如果由于
- clone_tags(estimator, tag_names=None)[source]#
克隆另一个对象的标签作为动态覆盖。
每个
scikit-base
兼容对象都有一个标签字典。标签可用于存储关于对象的元数据,或控制对象的行为。标签是特定于实例
self
的键值对,它们是静态标志,在对象构建后不会更改。clone_tags
从另一个对象estimator
设置动态标签覆盖。clone_tags
方法应仅在对象的__init__
方法中、构建期间或直接在通过__init__
构建后调用。动态标签设置为
estimator
中标签的值,名称在tag_names
中指定。tag_names
的默认值将estimator
中的所有标签写入self
。当前标签值可通过
get_tags
或get_tag
检查。- 参数:
- estimator:class:BaseObject 或派生类的实例
- tag_namesstr 或 list of str,默认 = None
要克隆的标签名称。默认值 (
None
) 克隆estimator
中的所有标签。
- 返回:
- self
对
self
的引用。
- classmethod create_test_instance(parameter_set='default')[source]#
使用第一个测试参数集构建类实例。
- 参数:
- parameter_setstr,默认=”default”
要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。
- 返回:
- instance具有默认参数的类实例
- classmethod create_test_instances_and_names(parameter_set='default')[source]#
创建所有测试实例的列表及其名称列表。
- 参数:
- parameter_setstr,默认=”default”
要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。
- 返回:
- objscls 实例列表
第 i 个实例是
cls(**cls.get_test_params()[i])
- namesstr 列表,与 objs 长度相同
第 i 个元素是 obj 在测试中第 i 个实例的名称。如果实例多于一个,命名约定为
{cls.__name__}-{i}
,否则为{cls.__name__}
- classmethod get_class_tag(tag_name, tag_value_default=None)[source]#
从类中获取类标签值,具有来自父类的标签级别继承。
每个
scikit-base
兼容对象都有一个标签字典,用于存储对象的元数据。get_class_tag
方法是类方法,检索标签的值,仅考虑类级别标签值和覆盖。它返回对象中名称为
tag_name
的标签的值,考虑标签覆盖,优先级从高到低依次为在类的
_tags
属性中设置的标签。在父类的
_tags
属性中设置的标签,
按继承顺序排列。
不考虑通过
set_tags
或clone_tags
在实例上设置的动态标签覆盖。要检索具有潜在实例覆盖的标签值,请改用
get_tag
方法。- 参数:
- tag_namestr
标签值的名称。
- tag_value_default任何类型
如果未找到标签,则为默认/备用值。
- 返回:
- tag_value
self
中tag_name
标签的值。如果未找到,则返回tag_value_default
。
- classmethod get_class_tags()[source]#
从类中获取类标签,具有来自父类的标签级别继承。
每个
scikit-base
兼容对象都有一个标签字典。标签可用于存储关于对象的元数据,或控制对象的行为。标签是特定于实例
self
的键值对,它们是静态标志,在对象构建后不会更改。get_class_tags
方法是类方法,检索标签的值,仅考虑类级别标签值和覆盖。它返回一个字典,键是类或其任何父类中设置的任何
_tags
属性的键。值是相应的标签值,覆盖优先级从高到低依次为
在类的
_tags
属性中设置的标签。在父类的
_tags
属性中设置的标签,
按继承顺序排列。
实例可以根据超参数覆盖这些标签。
要检索具有潜在实例覆盖的标签,请改用
get_tags
方法。不考虑通过
set_tags
或clone_tags
在实例上设置的动态标签覆盖。要包含动态标签的覆盖,请使用
get_tags
。- collected_tagsdict
标签名称 : 标签值对的字典。通过嵌套继承从
_tags
类属性收集。不会被通过set_tags
或clone_tags
设置的动态标签覆盖。
- get_config()[source]#
获取 self 的配置标志。
配置是
self
的键值对,通常用作控制行为的瞬态标志。get_config
返回动态配置,这些配置覆盖默认配置。默认配置在类或其父类的类属性
_config
中设置,并通过set_config
设置的动态配置进行覆盖。配置在
clone
或reset
调用下会保留。- 返回:
- config_dictdict
配置名称 : 配置值对的字典。通过嵌套继承从 _config 类属性收集,然后包含来自 _onfig_dynamic 对象属性的任何覆盖和新标签。
- get_fitted_params(deep=True)[source]#
获取拟合参数。
- 所需状态
需要状态为“fitted”。
- 参数:
- deepbool,默认=True
是否返回组件的拟合参数。
如果为 True,将返回此对象的参数名称 : 值字典,包括可拟合组件(= BaseEstimator 类型参数)的拟合参数。
如果为 False,将返回此对象的参数名称 : 值字典,但不包括组件的拟合参数。
- 返回:
- fitted_params键为 str 类型的 dict
拟合参数的字典,paramname : paramvalue 键值对包括
始终包含:此对象的所有拟合参数,通过
get_param_names
获取的值是此对象该键的拟合参数值如果
deep=True
,还包含组件参数的键/值对,组件参数按[componentname]__[paramname]
索引componentname
的所有参数都以paramname
形式出现,并带有其值如果
deep=True
,还包含任意级别的组件递归,例如[componentname]__[componentcomponentname]__[paramname]
等
- classmethod get_param_defaults()[source]#
获取对象的参数默认值。
- 返回:
- default_dict: dict[str, Any]
键是
cls
在__init__
中定义了默认值的所有参数。值是默认值,如__init__
中定义。
- classmethod get_param_names(sort=True)[source]#
获取对象的参数名称。
- 参数:
- sortbool,默认=True
是否按字母顺序排序(True)或按它们在类
__init__
中出现的顺序(False)返回参数名称。
- 返回:
- param_names: list[str]
cls
的参数名称列表。如果sort=False
,顺序与它们在类__init__
中出现的顺序相同。如果sort=True
,则按字母顺序排序。
- get_params(deep=True)[source]#
获取此对象的参数值字典。
- 参数:
- deepbool,默认=True
是否返回组件的参数。
如果为
True
,将返回此对象的参数名称 : 值dict
,包括组件(=BaseObject
类型参数)的参数。如果为
False
,将返回此对象的参数名称 : 值dict
,但不包括组件的参数。
- 返回:
- params键为 str 类型的 dict
参数字典,paramname : paramvalue 键值对包括
始终包含:此对象的所有参数,通过
get_param_names
获取的值是此对象该键的参数值,值始终与构建时传递的值相同如果
deep=True
,还包含组件参数的键/值对,组件参数按[componentname]__[paramname]
索引componentname
的所有参数都以paramname
形式出现,并带有其值如果
deep=True
,还包含任意级别的组件递归,例如[componentname]__[componentcomponentname]__[paramname]
等
- get_tag(tag_name, tag_value_default=None, raise_error=True)[source]#
从实例中获取标签值,具有标签级别继承和覆盖。
每个
scikit-base
兼容对象都有一个标签字典。标签可用于存储关于对象的元数据,或控制对象的行为。标签是特定于实例
self
的键值对,它们是静态标志,在对象构建后不会更改。get_tag
方法检索实例中名称为tag_name
的单个标签的值,考虑标签覆盖,优先级从高到低依次为在实例上通过
set_tags
或clone_tags
设置的标签,
在实例构建时设置。
在类的
_tags
属性中设置的标签。在父类的
_tags
属性中设置的标签,
按继承顺序排列。
- 参数:
- tag_namestr
要检索的标签名称
- tag_value_default任何类型,可选;默认=None
如果未找到标签,则为默认/备用值
- raise_errorbool
未找到标签时是否抛出
ValueError
- 返回:
- tag_valueAny
self
中tag_name
标签的值。如果未找到,如果raise_error
为 True 则抛出错误,否则返回tag_value_default
。
- 抛出:
- ValueError,如果
raise_error
为True
。 如果
tag_name
不在self.get_tags().keys()
中,则会抛出ValueError
。
- ValueError,如果
- get_tags()[source]#
从实例中获取标签,具有标签级别继承和覆盖。
每个
scikit-base
兼容对象都有一个标签字典。标签可用于存储关于对象的元数据,或控制对象的行为。标签是特定于实例
self
的键值对,它们是静态标志,在对象构建后不会更改。get_tags
方法返回一个标签字典,键是类或其任何父类中设置的任何_tags
属性的键,或者通过set_tags
或clone_tags
设置的标签。值是相应的标签值,覆盖优先级从高到低依次为
在实例上通过
set_tags
或clone_tags
设置的标签,
在实例构建时设置。
在类的
_tags
属性中设置的标签。在父类的
_tags
属性中设置的标签,
按继承顺序排列。
- 返回:
- collected_tagsdict
标签名称 : 标签值对的字典。通过嵌套继承从
_tags
类属性收集,然后包含来自_tags_dynamic
对象属性的任何覆盖和新标签。
- is_composite()[source]#
检查对象是否由其他 BaseObjects 组成。
复合对象是作为参数包含其他对象的对象。在实例上调用,因为这可能因实例而异。
- 返回:
- composite: bool
对象是否有任何参数的值是
BaseObject
的后代实例。
- property is_fitted[source]#
是否已调用
fit
。检查对象的
_is_fitted` 属性,该属性在对象构建期间应初始化为 ``False
,并在调用对象的 fit 方法时设置为 True。- 返回:
- bool
估计器是否已 fit。
- classmethod load_from_path(serial)[source]#
从文件位置加载对象。
- 参数:
- serialZipFile(path).open(“object”) 的结果
- 返回:
- 反序列化的 self 结果输出到
path
,即cls.save(path)
的输出
- 反序列化的 self 结果输出到
- classmethod load_from_serial(serial)[source]#
从序列化内存容器加载对象。
- 参数:
- serial
cls.save(None)
输出的第一个元素
- serial
- 返回:
- 反序列化的 self 结果输出
serial
,即cls.save(None)
的输出
- 反序列化的 self 结果输出
- reset()[source]#
将对象重置到干净的初始化后状态。
将
self
设置为构造函数调用后的状态,具有相同的超参数。通过set_config
设置的配置值也会保留。reset
调用会删除所有对象属性,除了超参数 = 写入
self
的__init__
参数,例如self.paramname
,其中paramname
是__init__
的参数包含双下划线的对象属性,即字符串“__”。例如,名为“__myattr”的属性会被保留。
配置属性,配置不变。即
reset
前后get_config
的结果相等。
类方法和对象方法,以及类属性也不受影响。
等同于
clone
,但reset
修改self
,而不是返回一个新对象。在调用
self.reset()
后,self
的值和状态与构造函数调用``type(self)(**self.get_params(deep=False))`` 获得的对象相等。- 返回:
- self
类实例重置为干净的初始化后状态,但保留当前的超参数值。
- save(path=None, serialization_format='pickle')[source]#
将序列化的 self 保存到字节类对象或 (.zip) 文件。
行为:如果
path
为 None,返回内存中的序列化 self 如果path
是文件位置,则将 self 以 zip 文件形式存储在该位置保存的文件是 zip 文件,包含以下内容:_metadata - 包含 self 的类,即 type(self) _obj - 序列化的 self。此类使用默认序列化(pickle)。
- 参数:
- pathNone 或文件位置(str 或 Path)
如果为 None,self 保存到内存对象 如果是文件位置,self 保存到该文件位置。如果
path=”estimator”,则会在当前工作目录下创建一个名为
estimator.zip
的 zip 文件。path=”/home/stored/estimator”,则会创建一个名为
estimator.zip
的 zip 文件
存储在
/home/stored/
中。- serialization_format: str, 默认 = “pickle”
用于序列化的模块。可用选项有“pickle”和“cloudpickle”。请注意,非默认格式可能需要安装其他软依赖项。
- 返回:
- 如果
path
为 None - 内存中的序列化 self - 如果
path
是文件位置 - 引用该文件的 ZipFile
- 如果
- set_config(**config_dict)[source]#
将配置标志设置为给定值。
- 参数:
- config_dictdict
配置名称 : 配置值对的字典。有效的配置、值及其含义如下所列
- displaystr,“diagram”(默认),或“text”
jupyter 内核如何显示 self 实例
“diagram” = html 方框图表示
“text” = 字符串打印输出
- print_changed_onlybool,默认=True
打印 self 时是否只列出与默认值不同的 self 参数(False),或所有参数名称和值(False)。不进行嵌套,即仅影响 self,不影响组件估计器。
- warningsstr,“on”(默认),或“off”
是否抛出警告,仅影响 sktime 的警告
“on” = 将抛出 sktime 的警告
“off” = 将不抛出 sktime 的警告
- backend:parallelstr,可选,默认=”None”
广播/向量化时用于并行化的后端,以下之一
“None”:顺序执行循环,简单的列表推导式
“loky”、“multiprocessing”和“threading”:使用
joblib.Parallel
“joblib”:自定义和第三方
joblib
后端,例如spark
“dask”:使用
dask
,需要在环境中安装dask
包“ray”:使用
ray
,需要在环境中安装ray
包
- backend:parallel:paramsdict,可选,默认={}(不传递参数)
作为配置传递给并行化后端的额外参数。有效的键取决于
backend:parallel
的值“None”:没有额外参数,忽略
backend_params
“loky”、“multiprocessing”和“threading”:默认的
joblib
后端。这里可以传递joblib.Parallel
的任何有效键,例如n_jobs
,但backend
除外,因为它直接由backend
控制。如果未传递n_jobs
,将默认为-1
,其他参数将默认为joblib
默认值。“joblib”:自定义和第三方
joblib
后端,例如spark
。这里可以传递joblib.Parallel
的任何有效键,例如n_jobs
,在这种情况下,backend
必须作为backend_params
的键传递。如果未传递n_jobs
,将默认为-1
,其他参数将默认为joblib
默认值。“dask”:可以传递
dask.compute
的任何有效键,例如scheduler
“ray”:可以传递以下键
“ray_remote_args”:
ray.init
的有效键字典- “shutdown_ray”:bool,默认=True;False 阻止
ray
在 并行化后关闭。
- “shutdown_ray”:bool,默认=True;False 阻止
“logger_name”:str,默认=”ray”;要使用的日志记录器的名称。
“mute_warnings”:bool,默认=False;如果为 True,则抑制警告
- 返回:
- self对 self 的引用。
注意
更改对象状态,将 config_dict 中的配置复制到 self._config_dynamic。
- set_params(**params)[source]#
设置此对象的参数。
此方法适用于简单的 skbase 对象以及复合对象。参数键字符串
<component>__<parameter>
可用于复合对象(即包含其他对象的对象),以访问组件<component>
中的<parameter>
。不带<component>__
的字符串<parameter>
也可以使用,如果这样可以使引用明确(例如,没有两个组件的参数名称相同)。- 参数:
- **paramsdict
BaseObject 参数,键必须是
<component>__<parameter>
字符串。如果__
后缀在 get_params 键中是唯一的,则可以作为完整字符串的别名。
- 返回:
- self对自身的引用(参数设置后)
- set_random_state(random_state=None, deep=True, self_policy='copy')[source]#
设置 self 的 random_state 伪随机种子参数。
通过
self.get_params
找到名为random_state
的参数,并通过set_params
将它们设置为派生自random_state
的整数。这些整数通过sample_dependent_seed
从链式哈希中采样,保证了 seeded 随机生成器的伪随机独立性。根据
self_policy
应用于self
中的random_state
参数,并且仅当deep=True
时应用于剩余的组件对象。注意:即使
self
没有random_state
,或者所有组件都没有random_state
参数,也会调用set_params
。因此,set_random_state
将重置任何scikit-base
对象,即使是那些没有random_state
参数的对象。- 参数:
- random_stateint, RandomState instance or None, default=None
伪随机数生成器,用于控制随机整数的生成。传入 int 可在多次函数调用中获得可复现的输出。
- deepbool,默认=True
Whether to set the random state in skbase object valued parameters, i.e., component estimators.
如果为 False,则仅设置
self
的random_state
参数(如果存在)。如果为 True,则也会设置组件对象中的
random_state
参数。
- self_policystr,{"copy", "keep", "new"} 之一,默认值 "copy"
“copy” :
self.random_state
被设置为输入的random_state
“keep” :
self.random_state
保持不变“new” :
self.random_state
被设置为一个新的随机状态,
派生自输入的
random_state
,通常与之不同
- 返回:
- self对自身的引用
- set_tags(**tag_dict)[source]#
将实例级别标签覆盖设置为给定值。
每个
scikit-base
兼容对象都有一个标签字典,用于存储对象的元数据。标签是特定于实例
self
的键值对,它们是对象构造后不会改变的静态标志。它们可用于元数据检查或控制对象的行为。set_tags
将动态标签覆盖设置为tag_dict
中指定的值,其中键是标签名,字典值是要设置的标签值。set_tags
方法只能在对象的__init__
方法中,即对象构造期间,或者直接在通过__init__
构造后调用。当前标签值可通过
get_tags
或get_tag
检查。- 参数:
- **tag_dictdict
标签名: 标签值对的字典。
- 返回:
- 自身
对自身的引用。