make_pipeline#

make_pipeline(*steps)[source]#

从任何类型的估计器创建管道。

参数:
stepssktime 估计器元组

顺序与用于管道构建的相同

返回:
pipe包含按顺序排列的步骤的 sktime 管道

始终是 BaseObject 的子类,具体对象由与 step[0] * step[1] * … * step[-1] 结果等效的 scitype 确定

示例

示例 1:预测器管道

>>> from sktime.pipeline import make_pipeline
>>> from sktime.transformations.series.exponent import ExponentTransformer
>>> from sktime.forecasting.trend import PolynomialTrendForecaster
>>> pipe = make_pipeline(ExponentTransformer(), PolynomialTrendForecaster())
>>> type(pipe).__name__
'TransformedTargetForecaster'

示例 2:分类器管道

>>> from sktime.pipeline import make_pipeline
>>> from sktime.transformations.series.exponent import ExponentTransformer
>>> from sktime.classification.distance_based import KNeighborsTimeSeriesClassifier
>>> pipe = make_pipeline(ExponentTransformer(), KNeighborsTimeSeriesClassifier())
>>> type(pipe).__name__
'ClassifierPipeline'

示例 3:变换器管道

>>> from sktime.pipeline import make_pipeline
>>> from sktime.transformations.series.exponent import ExponentTransformer
>>> pipe = make_pipeline(ExponentTransformer(), ExponentTransformer())
>>> type(pipe).__name__
'TransformerPipeline'