TSFresh 特征提取器#

class TSFreshFeatureExtractor(default_fc_parameters='efficient', kind_to_fc_parameters=None, chunksize=None, n_jobs=1, show_warnings=True, disable_progressbar=False, impute_function=None, profiling=None, profiling_filename=None, profiling_sorting=None, distributor=None)[source]#

用于通过 tsfresh.extract_features 提取时间序列特征的转换器。

作为 sktime 转换器,直接对接 tsfresh.extract_features [1]。

参数:
default_fc_parametersstr, FCParameters 对象 或 None,

默认值=None = tsfresh 默认值 = “comprehensive” 指定要提取的预定义特征集 如果是 str,应为 [“minimal”, “efficient”, “comprehensive”] 详见 [3]。

kind_to_fc_parameterslist 或 None, 默认值=None

包含字符串的列表,指定要提取的选定特征。tsfresh 的命名约定适用,即字符串应结构化为:{time_series_name}__{feature_name}__{param name 1}_{param value 1}__[..]__{param name k}_{param value k}。详见 [2] 获取更多细节,[4] 获取可行选项。必须传递 default_fc_parameters 或 kind_to_fc_parameters 之一。如果两者都传递,则只提取 kind_to_fc_parameters 中指定的特征。如果两者都不传递,则计算“comprehensive”特征集。

n_jobsint, 默认值=1

用于并行化的进程数。如果为零,则不使用并行化。

chunksizeNone 或 int, 默认值=None

提交给工作进程进行并行化的一个数据块的大小。一个数据块被定义为一个 id 和一种类型的一个时间序列。如果将 chunksize 设置为 10,则意味着一个任务是为 10 个时间序列计算所有特征。如果设置为 None,则根据 distributor,使用启发式方法查找最优 chunksize。如果遇到内存不足异常,可以尝试使用 dask distributor 并设置较小的 chunksize。

show_warningsbool, 默认值=True

在特征提取期间显示警告(计算器调试所需)。

disable_progressbarbool, 默认值=False

计算期间不显示进度条。

impute_functionNone 或 Callable, 默认值=None

None,如果不应发生插补,或者用于插补结果数据框的函数。插补绝不会发生在输入数据上。

profilingbool, 默认值=None

在特征提取期间开启性能分析。

profiling_sortingbasestring, 默认值=None

如何对性能分析结果进行排序(详见 tsfresh 性能分析包文档)。

profiling_filenamebasestring, 默认值=None

性能分析结果的保存位置。

distributordistributor class, 默认值=None

高级参数:用作分发器的类。详见 tsfresh 包的 utilities/distribution.py 文件。默认值=None 表示 tsfresh 默认实现会选择分发器。

属性:
is_fitted

是否已调用 fit 方法。

参考文献

[3]

https://tsfresh.readthedocs.io/en/stable/text/ feature_extraction_settings.html

[4]

https://tsfresh.readthedocs.io/en/stable/api/tsfresh.feature_extraction.html #module-tsfresh.feature_extraction.feature_calculators

[5]

Christ, M., Braun, N., Neuffer, J., and Kempa-Liehr A.W. (2018). Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh – A Python package). Neurocomputing 307 (2018) 72-77

示例

>>> from sklearn.model_selection import train_test_split
>>> from sktime.datasets import load_arrow_head
>>> from sktime.transformations.panel.tsfresh import TSFreshFeatureExtractor
>>> X, y = load_arrow_head(return_X_y=True)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y)
>>> ts_eff = TSFreshFeatureExtractor(
...     default_fc_parameters="efficient", disable_progressbar=True
... ) 
>>> X_transform1 = ts_eff.fit_transform(X_train) 
>>> features_to_calc = [
...     "dim_0__quantile__q_0.6",
...     "dim_0__longest_strike_above_mean",
...     "dim_0__variance",
... ]
>>> ts_custom = TSFreshFeatureExtractor(
...     kind_to_fc_parameters=features_to_calc, disable_progressbar=True
... ) 
>>> X_transform2 = ts_custom.fit_transform(X_train) 

方法

check_is_fitted([method_name])

检查估计器是否已拟合。

clone()

获取具有相同超参数和配置的对象克隆。

clone_tags(estimator[, tag_names])

从另一个对象克隆标签作为动态覆盖。

create_test_instance([parameter_set])

使用第一个测试参数集构造类的实例。

create_test_instances_and_names([parameter_set])

创建所有测试实例及其名称列表。

fit(X[, y])

将转换器拟合到 X,可选地拟合到 y。

fit_transform(X[, y])

拟合数据,然后对其进行转换。

get_class_tag(tag_name[, tag_value_default])

从类中获取类标签值,带有来自父类的标签级别继承。

get_class_tags()

从类中获取类标签,带有来自父类的标签级别继承。

get_config()

获取 self 的配置标志。

get_fitted_params([deep])

获取拟合参数。

get_param_defaults()

获取对象的默认参数。

get_param_names([sort])

获取对象的参数名称。

get_params([deep])

获取此对象的参数值字典。

get_tag(tag_name[, tag_value_default, ...])

从实例获取标签值,带有标签级别继承和覆盖。

get_tags()

从实例获取标签,带有标签级别继承和覆盖。

get_test_params([parameter_set])

返回估计器的测试参数设置。

inverse_transform(X[, y])

对 X 执行逆转换并返回逆转换后的版本。

is_composite()

检查对象是否由其他 BaseObject 组成。

load_from_path(serial)

从文件位置加载对象。

load_from_serial(serial)

从序列化内存容器加载对象。

reset()

将对象重置为干净的初始化后状态。

save([path, serialization_format])

将序列化的 self 保存到字节类对象或 (.zip) 文件。

set_config(**config_dict)

将配置标志设置为给定值。

set_params(**params)

设置此对象的参数。

set_random_state([random_state, deep, ...])

设置 self 的 random_state 伪随机种子参数。

set_tags(**tag_dict)

将实例级别标签覆盖设置为给定值。

transform(X[, y])

转换 X 并返回转换后的版本。

update(X[, y, update_params])

使用 X(可选 y)更新转换器。

classmethod get_test_params(parameter_set='default')[source]#

返回估计器的测试参数设置。

参数:
parameter_setstr, 默认值=”default”

要返回的测试参数集的名称,用于测试。如果未为某个值定义特殊参数,将返回 "default" 集。

返回:
paramsdict 或 list of dict, 默认值 = {}

用于创建类的测试实例的参数。每个 dict 都是构造一个“有趣”测试实例的参数,即 MyClass(**params)MyClass(**params[i]) 创建一个有效的测试实例。create_test_instance 使用 params 中的第一个(或唯一一个)字典。

check_is_fitted(method_name=None)[source]#

检查估计器是否已拟合。

检查是否存在 _is_fitted 属性且其值为 Trueis_fitted 属性应在调用对象的 fit 方法时设置为 True

如果不是,则引发 NotFittedError

参数:
method_namestr, 可选

调用此函数的方法的名称。如果提供,错误消息将包含此信息。

引发:
未拟合错误

如果估计器尚未拟合。

clone()[source]#

获取具有相同超参数和配置的对象克隆。

克隆是一个不同的对象,没有共享引用,处于初始化后状态。此函数等同于返回 selfsklearn.clone

等同于构造一个 type(self) 的新实例,并使用 self 的参数,即 type(self)(**self.get_params(deep=False))

如果在 self 上设置了配置,克隆也将具有与原始对象相同的配置,等同于调用 cloned_self.set_config(**self.get_config())

值上也等同于调用 self.reset,但区别在于 clone 返回一个新对象,而不是像 reset 那样改变 self

引发:
如果克隆不符合要求,则引发 RuntimeError,原因可能是 __init__ 有错误。
clone_tags(estimator, tag_names=None)[source]#

从另一个对象克隆标签作为动态覆盖。

每个 scikit-base 兼容对象都有一个标签字典。标签可用于存储对象的元数据或控制对象的行为。

标签是特定于实例 self 的键值对,它们是静态标志,在对象构造后不会改变。

clone_tags 从另一个对象 estimator 设置动态标签覆盖。

clone_tags 方法只能在对象的 __init__ 方法中调用,即在构造期间或通过 __init__ 构造之后立即调用。

动态标签被设置为 estimator 中标签的值,其名称在 tag_names 中指定。

tag_names 的默认设置是将 estimator 中的所有标签写入 self

可以通过 get_tagsget_tag 检查当前标签值。

参数:
estimator:class:BaseObject 或派生类的实例
tag_namesstr 或 list of str, 默认值 = None

要克隆的标签名称。默认设置 (None) 克隆 estimator 中的所有标签。

返回:
self

self 的引用。

classmethod create_test_instance(parameter_set='default')[source]#

使用第一个测试参数集构造类的实例。

参数:
parameter_setstr, 默认值=”default”

要返回的测试参数集的名称,用于测试。如果未为某个值定义特殊参数,将返回 “default” 集。

返回:
instance具有默认参数的类实例
classmethod create_test_instances_and_names(parameter_set='default')[source]#

创建所有测试实例及其名称列表。

参数:
parameter_setstr, 默认值=”default”

要返回的测试参数集的名称,用于测试。如果未为某个值定义特殊参数,将返回 “default” 集。

返回:
objscls 实例列表

第 i 个实例是 cls(**cls.get_test_params()[i])

namesstr 列表, 与 objs 长度相同

第 i 个元素是测试中 obj 的第 i 个实例的名称。如果实例多于一个,命名约定是 {cls.__name__}-{i},否则是 {cls.__name__}

fit(X, y=None)[source]#

将转换器拟合到 X,可选地拟合到 y。

状态改变

将状态改变为“已拟合”。

写入 self

  • 设置以“_”结尾的拟合模型属性,拟合属性可通过 get_fitted_params 检查。

  • self.is_fitted 标志设置为 True

  • 如果 self.get_tag("remember_data")True,则将 X 记忆为 self._X,并强制转换为 self.get_tag("X_inner_mtype")

参数:
Xsktime 兼容数据容器格式表示的时间序列

用于拟合转换的数据。

sktime 中的单个数据格式是所谓的 mtype 规范,每个 mtype 实现一个抽象的 scitype

  • Series scitype = 单个时间序列。pd.DataFrame, pd.Series, 或 np.ndarray (1D 或 2D)

  • Panel scitype = 时间序列集合。具有 2 级行 MultiIndex (instance, time)pd.DataFrame3D np.ndarray (instance, variable, time)list 类型为 Seriespd.DataFrame 列表

  • Hierarchical scitype = 分层时间序列集合。具有 3 级或更多级行 MultiIndex (hierarchy_1, ..., hierarchy_n, time)pd.DataFrame

关于数据格式的更多细节,请参阅 mtype 术语表。关于用法,请参阅转换器教程 examples/03_transformers.ipynb

y可选, sktime 兼容数据格式的数据, 默认值=None

附加数据,例如用于转换的标签。如果 self.get_tag("requires_y")True,则必须在 fit 中传递,不可选。关于所需格式,详见类文档字符串。

返回:
self估计器的已拟合实例
fit_transform(X, y=None)[source]#

拟合数据,然后对其进行转换。

将转换器拟合到 X 和 y,并返回 X 的转换版本。

状态改变

将状态改变为“已拟合”。

写入 self: _is_fitted : 标志设置为 True。_X : X, X 的强制转换副本, 如果 remember_data 标签为 True

可能在可能的情况下通过引用强制转换为内部类型或 update_data 兼容类型

模型属性(以“_”结尾):取决于估计器

参数:
Xsktime 兼容数据容器格式表示的时间序列

用于拟合转换的数据,以及要转换的数据。

sktime 中的单个数据格式是所谓的 mtype 规范,每个 mtype 实现一个抽象的 scitype

  • Series scitype = 单个时间序列。pd.DataFrame, pd.Series, 或 np.ndarray (1D 或 2D)

  • Panel scitype = 时间序列集合。具有 2 级行 MultiIndex (instance, time)pd.DataFrame3D np.ndarray (instance, variable, time)list 类型为 Seriespd.DataFrame 列表

  • Hierarchical scitype = 分层时间序列集合。具有 3 级或更多级行 MultiIndex (hierarchy_1, ..., hierarchy_n, time)pd.DataFrame

关于数据格式的更多细节,请参阅 mtype 术语表。关于用法,请参阅转换器教程 examples/03_transformers.ipynb

y可选, sktime 兼容数据格式的数据, 默认值=None

附加数据,例如用于转换的标签。如果 self.get_tag("requires_y")True,则必须在 fit 中传递,不可选。关于所需格式,详见类文档字符串。

返回:
X 的转换版本
类型取决于 X 的类型和 scitype:transform-output 标签
X | tf-output | 返回类型 |

|———-|————–|———————-| | Series | Primitives | pd.DataFrame (1 行) | | Panel | Primitives | pd.DataFrame | | Series | Series | Series | | Panel | Series | Panel | | Series | Panel | Panel |

返回中的实例对应于 X 中的实例
表中未列出的组合目前不支持
具体示例说明
  • 如果 XSeries (例如,pd.DataFrame)

transform-outputSeries,则返回一个相同 mtype 的单个 Series。示例:对单个序列进行去趋势

  • 如果 XPanel (例如,pd-multiindex) 且 transform-output

Series,则返回具有与 X 相同实例数的 Panel(转换器应用于每个输入 Series 实例)。示例:面板中的所有序列都被单独去趋势

  • 如果 XSeriesPaneltransform-output

Primitives,则返回一个 pd.DataFrame,其行数与 X 中的实例数相同。示例:返回的第 i 行包含第 i 个序列的均值和方差

  • 如果 XSeriestransform-outputPanel

则返回一个类型为 pd-multiindexPanel 对象。示例:输出的第 i 个实例是运行在 X 上的第 i 个窗口。

classmethod get_class_tag(tag_name, tag_value_default=None)[source]#

从类中获取类标签值,带有来自父类的标签级别继承。

每个 scikit-base 兼容对象都有一个标签字典,用于存储关于对象的元数据。

get_class_tag 方法是一个类方法,它仅考虑类级别标签值和覆盖来检索标签的值。

它返回对象中名称为 tag_name 的标签的值,考虑标签覆盖,按以下优先级降序排列:

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按继承顺序。

不考虑通过 set_tagsclone_tags 在实例上设置的动态标签覆盖。

要检索包含潜在实例覆盖的标签值,请改用 get_tag 方法。

参数:
tag_namestr

标签值的名称。

tag_value_default任意类型

如果未找到标签,则为默认/回退值。

返回:
tag_value

selftag_name 标签的值。如果未找到,返回 tag_value_default

classmethod get_class_tags()[source]#

从类中获取类标签,带有来自父类的标签级别继承。

每个 scikit-base 兼容对象都有一个标签字典。标签可用于存储对象的元数据或控制对象的行为。

标签是特定于实例 self 的键值对,它们是静态标志,在对象构造后不会改变。

get_class_tags 方法是一个类方法,它仅考虑类级别标签值和覆盖来检索标签的值。

它返回一个字典,其键是类或其任何父类中设置的任何 _tags 属性的键。

值是相应的标签值,覆盖按以下优先级降序排列:

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按继承顺序。

实例可以根据超参数覆盖这些标签。

要检索包含潜在实例覆盖的标签,请改用 get_tags 方法。

不考虑通过 set_tagsclone_tags 在实例上设置的动态标签覆盖。

若要包含来自动态标签的覆盖,请使用 get_tags

collected_tagsdict

标签名称:标签值对字典。通过嵌套继承从 _tags 类属性收集。不会被 set_tagsclone_tags 设置的动态标签覆盖。

get_config()[source]#

获取 self 的配置标志。

配置是 self 的键值对,通常用作控制行为的瞬时标志。

get_config 返回动态配置,这些配置会覆盖默认配置。

默认配置在类或其父类的 _config 类属性中设置,并被通过 set_config 设置的动态配置覆盖。

配置在 clonereset 调用后会保留。

返回:
config_dictdict

配置名称:配置值对字典。通过嵌套继承从 _config 类属性收集,然后从 _onfig_dynamic 对象属性获取任何覆盖和新标签。

get_fitted_params(deep=True)[source]#

获取拟合参数。

所需状态

要求状态为“已拟合”。

参数:
deepbool, 默认值=True

是否返回组件的拟合参数。

  • 如果为 True,将返回此对象的参数名称:值字典,包括可拟合组件(= BaseEstimator 类型参数)的拟合参数。

  • 如果为 False,将返回此对象的参数名称:值字典,但不包含组件的拟合参数。

返回:
fitted_params带有 str 类型键的 dict

拟合参数字典,paramname:paramvalue 键值对包括

  • 始终:此对象的所有拟合参数,通过 get_param_names 获取的值是此对象对应键的拟合参数值

  • 如果 deep=True,还包含组件参数的键/值对,组件参数索引为 [componentname]__[paramname]componentname 的所有参数都以 paramname 及其值的形式出现

  • 如果 deep=True,还包含任意级别的组件递归,例如 [componentname]__[componentcomponentname]__[paramname]

classmethod get_param_defaults()[source]#

获取对象的默认参数。

返回:
default_dict: dict[str, Any]

键是 cls 中所有在 __init__ 中定义了默认值的参数。值是 __init__ 中定义的默认值。

classmethod get_param_names(sort=True)[source]#

获取对象的参数名称。

参数:
sortbool, 默认值=True

是否按字母顺序返回参数名称 (True),或按它们在类 __init__ 中出现的顺序返回 (False)。

返回:
param_names: list[str]

cls 的参数名称列表。如果 sort=False,按它们在类 __init__ 中出现的顺序排列。如果 sort=True,按字母顺序排列。

get_params(deep=True)[source]#

获取此对象的参数值字典。

参数:
deepbool, 默认值=True

是否返回组件的参数。

  • 如果为 True,将返回此对象的参数名称:值 dict,包括组件参数(= BaseObject 类型参数)。

  • 如果为 False,将返回此对象的参数名称:值 dict,但不包含组件参数。

返回:
params带有 str 类型键的 dict

参数字典,paramname:paramvalue 键值对包括

  • 始终:此对象的所有参数,通过 get_param_names 获取的值是此对象对应键的参数值,值始终与构造时传递的值相同

  • 如果 deep=True,还包含组件参数的键/值对,组件参数索引为 [componentname]__[paramname]componentname 的所有参数都以 paramname 及其值的形式出现

  • 如果 deep=True,还包含任意级别的组件递归,例如 [componentname]__[componentcomponentname]__[paramname]

get_tag(tag_name, tag_value_default=None, raise_error=True)[source]#

从实例获取标签值,带有标签级别继承和覆盖。

每个 scikit-base 兼容对象都有一个标签字典。标签可用于存储对象的元数据或控制对象的行为。

标签是特定于实例 self 的键值对,它们是静态标志,在对象构造后不会改变。

get_tag 方法从实例中检索名称为 tag_name 的单个标签的值,考虑标签覆盖,按以下优先级降序排列:

  1. 通过 set_tagsclone_tags 在实例上设置的标签,

在实例构造时设置。

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按继承顺序。

参数:
tag_namestr

要检索的标签名称

tag_value_default任意类型, 可选; 默认值=None

如果未找到标签,则为默认/回退值

raise_errorbool

未找到标签时是否引发 ValueError

返回:
tag_valueAny

selftag_name 标签的值。如果未找到,当 raise_error 为 True 时引发错误,否则返回 tag_value_default

引发:
ValueError, 如果 raise_errorTrue

如果 tag_name 不在 self.get_tags().keys() 中,则引发 ValueError

get_tags()[source]#

从实例获取标签,带有标签级别继承和覆盖。

每个 scikit-base 兼容对象都有一个标签字典。标签可用于存储对象的元数据或控制对象的行为。

标签是特定于实例 self 的键值对,它们是静态标志,在对象构造后不会改变。

get_tags 方法返回一个标签字典,其键是类或其任何父类中设置的任何 _tags 属性的键,或者通过 set_tagsclone_tags 设置的标签。

值是相应的标签值,覆盖按以下优先级降序排列:

  1. 通过 set_tagsclone_tags 在实例上设置的标签,

在实例构造时设置。

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按继承顺序。

返回:
collected_tagsdict

标签名称:标签值对字典。通过嵌套继承从 _tags 类属性收集,然后从 _tags_dynamic 对象属性获取任何覆盖和新标签。

inverse_transform(X, y=None)[source]#

对 X 执行逆转换并返回逆转换后的版本。

目前假定只有带有以下标签的转换器

“scitype:transform-input”=”Series”, “scitype:transform-output”=”Series”,

具有 inverse_transform 方法。

所需状态

要求状态为“已拟合”。

在 self 中访问

  • 以“_”结尾的已拟合模型属性。

  • self.is_fitted,必须为 True

参数:
Xsktime 兼容数据容器格式表示的时间序列

用于拟合转换的数据。

sktime 中的单个数据格式是所谓的 mtype 规范,每个 mtype 实现一个抽象的 scitype

  • Series scitype = 单个时间序列。pd.DataFrame, pd.Series, 或 np.ndarray (1D 或 2D)

  • Panel scitype = 时间序列集合。具有 2 级行 MultiIndex (instance, time)pd.DataFrame3D np.ndarray (instance, variable, time)list 类型为 Seriespd.DataFrame 列表

  • Hierarchical scitype = 分层时间序列集合。具有 3 级或更多级行 MultiIndex (hierarchy_1, ..., hierarchy_n, time)pd.DataFrame

关于数据格式的更多细节,请参阅 mtype 术语表。关于用法,请参阅转换器教程 examples/03_transformers.ipynb

y可选, sktime 兼容数据格式的数据, 默认值=None

附加数据,例如用于转换的标签。某些转换器需要此数据,详见类文档字符串。

返回:
X 的逆转换版本

与 X 类型相同,并符合 mtype 格式规范

is_composite()[source]#

检查对象是否由其他 BaseObject 组成。

组合对象是指包含其他对象作为参数的对象。在实例上调用此方法,因为不同实例的结果可能不同。

返回:
composite: bool

对象是否有任何参数的值是 BaseObject 的后代实例。

property is_fitted[source]#

是否已调用 fit 方法。

检查对象的 _is_fitted` 属性,该属性在对象构造期间应初始化为 False,并在调用对象的 fit 方法时设置为 True。

返回:
bool

估计器是否已执行 fit

classmethod load_from_path(serial)[source]#

从文件位置加载对象。

参数:
serialZipFile(path).open(“object) 的结果
返回:
反序列化的 self,结果位于 path,是 cls.save(path) 的输出
classmethod load_from_serial(serial)[source]#

从序列化内存容器加载对象。

参数:
serialcls.save(None) 输出的第一个元素
返回:
反序列化的 self,结果为输出 serial,是 cls.save(None) 的输出
reset()[source]#

将对象重置为干净的初始化后状态。

结果是将 self 设置为构造函数调用后立即所处的状态,具有相同的超参数。通过 set_config 设置的配置值也会保留。

reset 调用删除所有对象属性,除了

  • 超参数 = 写入 self__init__ 参数,例如 self.paramname,其中 paramname__init__ 的参数

  • 包含双下划线的对象属性,即字符串“__”。例如,名为“__myattr”的属性会被保留。

  • 配置属性,配置会保留而不改变。也就是说,reset 前后 get_config 的结果是相同的。

类和对象方法以及类属性也不受影响。

等同于 clone,但区别在于 reset 改变 self,而不是返回一个新对象。

调用 self.reset() 后,self 的值和状态与构造函数调用type(self)(**self.get_params(deep=False))后获得的对象相同。

返回:
self

类实例重置为干净的初始化后状态,但保留当前的超参数值。

save(path=None, serialization_format='pickle')[source]#

将序列化的 self 保存到字节类对象或 (.zip) 文件。

行为:如果 path 为 None,返回一个内存中的序列化 self 如果 path 是文件位置,则将 self 作为 zip 文件存储在该位置

保存的文件是 zip 文件,包含以下内容: _metadata - 包含 self 的类,即 type(self) _obj - 序列化的 self。此类使用默认序列化方式 (pickle)。

参数:
pathNone 或文件位置 (str 或 Path)

如果为 None,则 self 保存到内存对象;如果是文件位置,则 self 保存到该文件位置。如果

  • path=”estimator”,则将在当前工作目录创建 zip 文件 estimator.zip

  • path=”/home/stored/estimator”,则 zip 文件 estimator.zip 将被保存到

存储在 /home/stored/ 中。

serialization_format: str, 默认值 = “pickle”

用于序列化的模块。可用选项有“pickle”和“cloudpickle”。请注意,非默认格式可能需要安装其他软依赖项。

返回:
如果 path 为 None - 内存中的序列化 self
如果 path 是文件位置 - 指向文件的 ZipFile
set_config(**config_dict)[source]#

将配置标志设置为给定值。

参数:
config_dictdict

配置名称:配置值对字典。有效的配置、值及其含义如下所示

displaystr, “diagram” (默认), 或 “text”

jupyter 内核如何显示 self 的实例

  • “diagram” = html 框图表示

  • “text” = 字符串输出

print_changed_onlybool, 默认值=True

打印 self 时是否只列出与默认值不同的 self 参数 (False),或者列出所有参数名称和值 (False)。不进行嵌套,即只影响 self,不影响组件估计器。

warningsstr, “on” (默认), 或 “off”

是否引发警告,仅影响来自 sktime 的警告

  • “on” = 将引发来自 sktime 的警告

  • “off” = 不会引发来自 sktime 的警告

backend:parallelstr, 可选, 默认值=”None”

广播/向量化时用于并行化的后端,以下之一

  • “None”: 顺序执行循环,简单的列表推导

  • “loky”, “multiprocessing” 和 “threading”: 使用 joblib.Parallel

  • “joblib”: 自定义和第三方 joblib 后端,例如 spark

  • “dask”: 使用 dask,需要在环境中安装 dask

  • “ray”: 使用 ray,需要在环境中安装 ray

backend:parallel:paramsdict, 可选, 默认值={} (不传递参数)

作为配置传递给并行化后端的附加参数。有效键取决于 backend:parallel 的值

  • “None”: 无附加参数,忽略 backend_params

  • “loky”, “multiprocessing” 和 “threading”: 默认 joblib 后端。此处可以传递 joblib.Parallel 的任何有效键,例如 n_jobs,但 backend 除外,它由 backend 直接控制。如果未传递 n_jobs,则默认为 -1,其他参数将默认为 joblib 默认值。

  • “joblib”:自定义和第三方 joblib 后端,例如 spark。可以在此处传递任何对 joblib.Parallel 有效的键,例如 n_jobs;在这种情况下,backend 必须作为 backend_params 的一个键传递。如果未传递 n_jobs,则默认值为 -1;其他参数将默认为 joblib 的默认值。

  • “dask”:可以传递任何对 dask.compute 有效的键,例如 scheduler

  • “ray”:可以传递以下键

    • “ray_remote_args”:对 ray.init 有效的键的字典

    • “shutdown_ray”:布尔值,默认值为 True;False 会阻止 ray

      并行化后关闭。

    • “logger_name”:字符串,默认值为“ray”;要使用的日志记录器的名称。

    • “mute_warnings”:布尔值,默认值为 False;如果为 True,则会抑制警告

input_conversion字符串,取值为“on”(默认)、“off”或有效的 mtype 字符串之一

控制输入检查和转换,适用于 _fit_transform_inverse_transform_update

  • "on" - 执行输入检查和转换

  • "off" - 在将数据传递给内部方法之前,不执行输入检查和转换

  • 有效 mtype 字符串 - 输入被假定为指定的 mtype,执行转换但不执行检查

output_conversion字符串,取值为“on”、“off”或有效的 mtype 字符串之一

控制 _transform_inverse_transform 的输出转换

  • "on" - 如果 input_conversion 为“on”,则执行输出转换

  • "off" - 直接返回 _transform_inverse_transform 的输出

  • 有效 mtype 字符串 - 输出被转换为指定的 mtype

返回:
self对自身的引用。

注意

更改对象状态,将 config_dict 中的配置复制到 self._config_dynamic。

set_params(**params)[source]#

设置此对象的参数。

此方法适用于简单的 skbase 对象以及复合对象。对于复合对象,即包含其他对象的对象,可以使用参数键字符串 <component>__<parameter> 来访问组件 <component> 中的 <parameter>。如果引用是明确的,例如没有两个组件参数具有相同的名称 <parameter>,则也可以使用不带 <component>__ 的字符串 <parameter>

参数:
**params**字典

BaseObject 参数,键必须是 <component>__<parameter> 字符串。如果 __ 后缀在 get_params 键中是唯一的,则可以作为完整字符串的别名。

返回:
self对自身的引用(参数设置后)
set_random_state(random_state=None, deep=True, self_policy='copy')[source]#

设置 self 的 random_state 伪随机种子参数。

通过 self.get_params 查找名为 random_state 的参数,并通过 set_params 将它们设置为从 random_state 派生的整数。这些整数通过 sample_dependent_seed 从链式哈希中采样,并保证种子随机生成器之间的伪随机独立性。

适用于 self 中的 random_state 参数(取决于 self_policy),以及仅当 deep=True 时适用于剩余组件对象。

注意:即使 self 没有 random_state 参数,或者任何组件都没有 random_state 参数,也会调用 set_params。因此,set_random_state 将重置任何 scikit-base 对象,即使是那些没有 random_state 参数的对象。

参数:
random_state整数、RandomState 实例或 None,默认值为 None

用于控制随机整数生成的伪随机数生成器。传入整数可在多次函数调用中获得可重现的输出。

deepbool, 默认值=True

是否在 skbase 对象值的参数(即组件估计器)中设置随机状态。

  • 如果为 False,则仅设置 selfrandom_state 参数(如果存在)。

  • 如果为 True,则也会在组件对象中设置 random_state 参数。

self_policy字符串,取值为 {“copy”, “keep”, “new”} 之一,默认值为“copy”
  • “copy”:self.random_state 设置为输入的 random_state

  • “keep”:self.random_state 保持不变

  • “new”:self.random_state 设置为一个新的随机状态,

派生自输入的 random_state,并且通常与它不同

返回:
self对自身的引用
set_tags(**tag_dict)[source]#

将实例级别标签覆盖设置为给定值。

每个 scikit-base 兼容对象都有一个标签字典,用于存储关于对象的元数据。

标签是特定于实例 self 的键值对,它们是对象构建后不会更改的静态标志。它们可用于元数据检查或控制对象的行为。

set_tags 将动态标签覆盖设置为 tag_dict 中指定的值,其中键是标签名称,字典值是要设置的标签值。

set_tags 方法应该仅在对象的 __init__ 方法中(构建期间)或通过 __init__ 直接构建后调用。

可以通过 get_tagsget_tag 检查当前标签值。

参数:
**tag_dict**字典

标签名称:标签值对的字典。

返回:
Self

对自身的引用。

transform(X, y=None)[source]#

转换 X 并返回转换后的版本。

所需状态

要求状态为“已拟合”。

在 self 中访问

  • 以“_”结尾的已拟合模型属性。

  • self.is_fitted,必须为 True

参数:
Xsktime 兼容数据容器格式表示的时间序列

要转换的数据。

sktime 中的单个数据格式是所谓的 mtype 规范,每个 mtype 实现一个抽象的 scitype

  • Series scitype = 单个时间序列。pd.DataFrame, pd.Series, 或 np.ndarray (1D 或 2D)

  • Panel scitype = 时间序列集合。具有 2 级行 MultiIndex (instance, time)pd.DataFrame3D np.ndarray (instance, variable, time)list 类型为 Seriespd.DataFrame 列表

  • Hierarchical scitype = 分层时间序列集合。具有 3 级或更多级行 MultiIndex (hierarchy_1, ..., hierarchy_n, time)pd.DataFrame

关于数据格式的更多细节,请参阅 mtype 术语表。关于用法,请参阅转换器教程 examples/03_transformers.ipynb

y可选, sktime 兼容数据格式的数据, 默认值=None

附加数据,例如用于转换的标签。某些转换器需要此数据,详见类文档字符串。

返回:
X 的转换版本
类型取决于 X 的类型和 scitype:transform-output 标签

转换

X

-输出

返回类型

Series

Primitives

pd.DataFrame (1 行)

Panel

Primitives

pd.DataFrame

Series

Series

Series

Panel

Series

Panel

Series

Panel

Panel

返回中的实例对应于 X 中的实例
表中未列出的组合目前不支持
具体示例说明
  • 如果 XSeries (例如,pd.DataFrame)

transform-outputSeries,则返回一个相同 mtype 的单个 Series。示例:对单个序列进行去趋势

  • 如果 XPanel (例如,pd-multiindex) 且 transform-output

Series,则返回具有与 X 相同实例数的 Panel(转换器应用于每个输入 Series 实例)。示例:面板中的所有序列都被单独去趋势

  • 如果 XSeriesPaneltransform-output

Primitives,则返回一个 pd.DataFrame,其行数与 X 中的实例数相同。示例:返回的第 i 行包含第 i 个序列的均值和方差

  • 如果 XSeriestransform-outputPanel

则返回一个类型为 pd-multiindexPanel 对象。示例:输出的第 i 个实例是运行在 X 上的第 i 个窗口。

update(X, y=None, update_params=True)[source]#

使用 X(可选 y)更新转换器。

所需状态

要求状态为“已拟合”。

在 self 中访问

  • 以“_”结尾的已拟合模型属性。

  • self.is_fitted,必须为 True

写入 self

  • 以“_”结尾的已拟合模型属性。

  • 如果 remember_data 标签为 True,则通过 update_data 写入 self._X,用 X 中的值进行更新。

参数:
Xsktime 兼容数据容器格式表示的时间序列

用于更新转换的数据

sktime 中的单个数据格式是所谓的 mtype 规范,每个 mtype 实现一个抽象的 scitype

  • Series scitype = 单个时间序列。pd.DataFrame, pd.Series, 或 np.ndarray (1D 或 2D)

  • Panel scitype = 时间序列集合。具有 2 级行 MultiIndex (instance, time)pd.DataFrame3D np.ndarray (instance, variable, time)list 类型为 Seriespd.DataFrame 列表

  • Hierarchical scitype = 分层时间序列集合。具有 3 级或更多级行 MultiIndex (hierarchy_1, ..., hierarchy_n, time)pd.DataFrame

关于数据格式的更多细节,请参阅 mtype 术语表。关于用法,请参阅转换器教程 examples/03_transformers.ipynb

y可选, sktime 兼容数据格式的数据, 默认值=None

附加数据,例如用于转换的标签。某些转换器需要此数据,详见类文档字符串。

返回:
self估计器的已拟合实例