RocketClassifier#
- 类 RocketClassifier(num_kernels=10000, rocket_transform='rocket', max_dilations_per_kernel=32, n_features_per_kernel=4, use_multivariate='auto', n_jobs=1, random_state=None)[source]#
使用 RidgeClassifierCV 包装的 Rocket 变换器的分类器。
该分类器使用 Rocket [1] 变换器简单地变换输入数据,并使用变换后的数据构建 RidgeClassifierCV 评估器。
管道
rocket * StandardScaler(with_mean=False) * RidgeClassifierCV(alphas)
的简写,其中alphas = np.logspace(-3, 3, 10)
,并且rocket
如下依赖于参数rocket_transform
,use_multivariate
类是 sktime 类,其他参数传递给 rocket 类。
要使用 rocket 变换器构建其他分类器,请使用
make_pipeline
或管道 dunder*
,并组合不同的变换器/分类器。- 参数:
- num_kernelsint,可选,默认值=10,000
Rocket 变换器的核函数数量。
- rocket_transformstr,可选,默认值=”rocket”
要使用的 Rocket 变换器类型。有效输入 = [“rocket”, “minirocket”, “multirocket”]
- max_dilations_per_kernelint,可选,默认值=32
仅 MiniRocket 和 MultiRocket。每个核函数的最大扩张数。
- n_features_per_kernelint,可选,默认值=4
仅 MultiRocket。每个核函数的特征数。
- use_multivariatestr,[“auto”, “yes”, “no”],可选,默认值=”auto”
是否使用多元 rocket 变换器或单变量变换器。"auto" = 如果 fit 中看到的数据是多元的,则为多元,否则为单变量。"yes" = 始终使用多元变换器,支持原生多元/单变量。"no" = 始终使用单变量变换器,多元通过框架向量化实现。
- n_jobsint,默认值=1
用于并行运行
fit
和predict
的作业数。-1
表示使用所有处理器。- random_stateint 或 None,默认值=None
随机数生成的种子。
- 属性:
- n_classesint
类别数。
- classes_list
类别标签。
estimator_
ClassifierPipeline已拟合的内部评估器的简写。
- num_kernels_int
rocket 变换器中使用的实际核函数数量。当 rocket_transform=”rocket” 时,这是 num_kernels。当 rocket_transform 是“minirocket” 或 “multirocket” 时,这是 num_kernels 向下取整到最接近的 84 的倍数。如果 num_kernels 小于 84,则为 84。
另请参阅
Rocket
注意
对于 Java 版本,请参阅 TSML。
参考文献
[1]Dempster, Angus, François Petitjean, and Geoffrey I. Webb. “Rocket: exceptionally fast and accurate time series classification using random convolutional kernels.” Data Mining and Knowledge Discovery 34.5 (2020)
示例
>>> from sktime.classification.kernel_based import RocketClassifier >>> from sktime.datasets import load_unit_test >>> X_train, y_train = load_unit_test(split="train", return_X_y=True) >>> X_test, y_test = load_unit_test(split="test", return_X_y=True) >>> clf = RocketClassifier(num_kernels=500) >>> clf.fit(X_train, y_train) RocketClassifier(...) >>> y_pred = clf.predict(X_test)
方法
check_is_fitted
([method_name])检查评估器是否已拟合。
克隆
()获取具有相同超参数和配置的对象的克隆。
clone_tags
(estimator[, tag_names])将标签从另一个对象克隆为动态覆盖。
create_test_instance
([parameter_set])使用第一个测试参数集构建类的实例。
create_test_instances_and_names
([parameter_set])创建所有测试实例列表及其名称列表。
fit
(X, y)将时间序列分类器拟合到训练数据。
fit_predict
(X, y[, cv, change_state])拟合并预测 X 中序列的标签。
fit_predict_proba
(X, y[, cv, change_state])拟合并预测 X 中序列的标签概率。
get_class_tag
(tag_name[, tag_value_default])从类中获取类标签值,带有父类的标签级别继承。
从类中获取类标签,带有父类的标签级别继承。
获取 self 的配置标志。
get_fitted_params
([deep])获取拟合参数。
获取对象的默认参数。
get_param_names
([sort])获取对象的参数名称。
get_params
([deep])获取此对象的参数值字典。
get_tag
(tag_name[, tag_value_default, ...])从实例获取标签值,带有标签级别继承和覆盖。
get_tags
()从实例获取标签,带有标签级别继承和覆盖。
get_test_params
([parameter_set])返回评估器的测试参数设置。
检查对象是否由其他 BaseObjects 组成。
load_from_path
(serial)从文件位置加载对象。
load_from_serial
(serial)从序列化内存容器加载对象。
predict
(X)预测 X 中序列的标签。
预测 X 中序列的标签概率。
重置
()将对象重置为干净的初始化后状态。
save
([path, serialization_format])将序列化的 self 保存到字节类对象或 (.zip) 文件。
score
(X, y)在 X 上根据真实标签对预测标签评分。
set_config
(**config_dict)将配置标志设置为给定值。
set_params
(**params)设置此对象的参数。
set_random_state
([random_state, deep, ...])为 self 设置 random_state 伪随机种子参数。
set_tags
(**tag_dict)将实例级别标签覆盖设置为给定值。
- check_is_fitted(method_name=None)[source]#
检查评估器是否已拟合。
检查
_is_fitted
属性是否存在且为True
。is_fitted
属性应在调用对象的fit
方法时设置为True
。如果不是,则引发
NotFittedError
。- 参数:
- method_namestr,可选
调用此方法的名称。如果提供,错误消息将包含此信息。
- 引发:
- NotFittedError
如果评估器尚未拟合。
- clone()[source]#
获取具有相同超参数和配置的对象的克隆。
克隆是没有共享引用、处于初始化后状态的不同对象。此函数等同于返回
sklearn.clone
的self
。等同于使用
self
的参数构造一个type(self)
的新实例,即type(self)(**self.get_params(deep=False))
。如果
self
上设置了配置,克隆也将具有与原始对象相同的配置,等同于调用cloned_self.set_config(**self.get_config())
。在值上也等同于调用
self.reset
,但clone
返回一个新对象,而不是像reset
那样改变self
。- 引发:
- 如果克隆不符合规范(由于错误的
__init__
),则引发 RuntimeError。
- 如果克隆不符合规范(由于错误的
- clone_tags(estimator, tag_names=None)[source]#
将标签从另一个对象克隆为动态覆盖。
每个
scikit-base
兼容对象都有一个标签字典。标签可用于存储有关对象的元数据,或控制对象的行为。标签是特定于实例
self
的键值对,它们是静态标志,在对象构造后不会更改。clone_tags
从另一个对象estimator
设置动态标签覆盖。在对象构造期间或通过
__init__
直接构造后,clone_tags
方法只能在对象的__init__
方法中调用。动态标签设置为
estimator
中标签的值,名称在tag_names
中指定。tag_names
的默认值将estimator
中的所有标签写入self
。当前标签值可以通过
get_tags
或get_tag
检查。- 参数:
- estimator:class:BaseObject 或派生类的实例
- tag_namesstr 或 str 列表,默认值 = None
要克隆的标签名称。默认值 (
None
) 克隆estimator
中的所有标签。
- 返回:
- self
对
self
的引用。
- classmethod create_test_instance(parameter_set='default')[source]#
使用第一个测试参数集构建类的实例。
- 参数:
- parameter_setstr,默认值=”default”
要返回的测试参数集的名称,用于测试。如果未为值定义特殊参数,将返回“default”集。
- 返回:
- instance具有默认参数的类实例
- classmethod create_test_instances_and_names(parameter_set='default')[source]#
创建所有测试实例列表及其名称列表。
- 参数:
- parameter_setstr,默认值=”default”
要返回的测试参数集的名称,用于测试。如果未为值定义特殊参数,将返回“default”集。
- 返回:
- objscls 实例列表
第 i 个实例是
cls(**cls.get_test_params()[i])
- namesstr 列表,与 objs 长度相同
第 i 个元素是 objs 在测试中的第 i 个实例的名称。命名约定是,如果实例不止一个,则为
{cls.__name__}-{i}
,否则为{cls.__name__}
- fit(X, y)[source]#
将时间序列分类器拟合到训练数据。
- 状态变更
状态变更为“已拟合”。
- 写入 self
将 self.is_fitted 设置为 True。设置以“_”结尾的拟合模型属性。
- 参数:
- Xsktime 兼容的时间序列面板数据容器,属于 Panel scitype
用于拟合评估器的时间序列。
可以是
Panel
scitype 的任何 mtype,例如pd-multiindex: pd.DataFrame,其中 columns = 变量,index = pd.MultiIndex,第一层 = 实例索引,第二层 = 时间索引
numpy3D: 3D np.array (任意维数,等长序列),形状为 [n_instances, n_dimensions, series_length]
或任何其他支持的
Panel
mtype
mtypes 列表,请参阅
datatypes.SCITYPE_REGISTER
详细规范,请参阅
examples/AA_datatypes_and_datasets.ipynb
并非所有评估器都支持具有多元或不等长序列的面板,详细信息请参阅标签参考。
- ysktime 兼容的表格数据容器,Table scitype
1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions],用于拟合的类别标签。第 0 个索引对应于 X 中的实例索引,第 1 个索引(如果适用)对应于 X 中的多输出向量索引。支持的 sktime 类型:np.ndarray (1D, 2D), pd.Series, pd.DataFrame
- 返回:
- self对 self 的引用。
- fit_predict(X, y, cv=None, change_state=True)[source]#
拟合并预测 X 中序列的标签。
用于生成样本内预测和交叉验证的样本外预测的便捷方法。
- 如果 change_state=True,则写入 self
将 self.is_fitted 设置为 True。设置以“_”结尾的拟合模型属性。
如果 change_state=False,则不更新状态。
- 参数:
- Xsktime 兼容的时间序列面板数据容器,属于 Panel scitype
用于拟合和预测标签的时间序列。
可以是
Panel
scitype 的任何 mtype,例如pd-multiindex: pd.DataFrame,其中 columns = 变量,index = pd.MultiIndex,第一层 = 实例索引,第二层 = 时间索引
numpy3D: 3D np.array (任意维数,等长序列),形状为 [n_instances, n_dimensions, series_length]
或任何其他支持的
Panel
mtype
mtypes 列表,请参阅
datatypes.SCITYPE_REGISTER
详细规范,请参阅
examples/AA_datatypes_and_datasets.ipynb
并非所有评估器都支持具有多元或不等长序列的面板,详细信息请参阅标签参考。
- ysktime 兼容的表格数据容器,Table scitype
1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions],用于拟合的类别标签。第 0 个索引对应于 X 中的实例索引,第 1 个索引(如果适用)对应于 X 中的多输出向量索引。支持的 sktime 类型:np.ndarray (1D, 2D), pd.Series, pd.DataFrame
- cvNone,int 或 sklearn 交叉验证对象,可选,默认值=None
None : 预测是样本内预测,等同于
fit(X, y).predict(X)
cv : 预测等同于
fit(X_train, y_train).predict(X_test)
,其中多个X_train
,y_train
,X_test
从cv
折叠中获得。返回的y
是所有测试折叠预测的并集,cv
测试折叠必须不相交int : 等同于
cv=KFold(cv, shuffle=True, random_state=x)
,即 k 折交叉验证样本外预测,并且random_state
x
如果存在则取自self
,否则x=None
- change_statebool,可选 (默认值=True)
如果为 False,将不会改变分类器的状态,即 fit/predict 序列使用副本运行,self 不会改变
如果为 True,将把 self 拟合到完整的 X 和 y,最终状态将等同于运行 fit(X, y)
- 返回:
- y_predsktime 兼容的表格数据容器,属于 Table scitype
预测的类别标签
1D 可迭代对象,形状为 [n_instances],或 2D 可迭代对象,形状为 [n_instances, n_dimensions]。
第 0 个索引对应于 X 中的实例索引,第 1 个索引(如果适用)对应于 X 中的多输出向量索引。
如果 y 是单变量(一维),则为 1D np.npdarray;否则,与 fit 中传入的 y 类型相同
- fit_predict_proba(X, y, cv=None, change_state=True)[source]#
拟合并预测 X 中序列的标签概率。
用于生成样本内预测和交叉验证的样本外预测的便捷方法。
- 如果 change_state=True,则写入 self
将 self.is_fitted 设置为 True。设置以“_”结尾的拟合模型属性。
如果 change_state=False,则不更新状态。
- 参数:
- Xsktime 兼容的时间序列面板数据容器,属于 Panel scitype
用于拟合和预测标签的时间序列。
可以是
Panel
scitype 的任何 mtype,例如pd-multiindex: pd.DataFrame,其中 columns = 变量,index = pd.MultiIndex,第一层 = 实例索引,第二层 = 时间索引
numpy3D: 3D np.array (任意维数,等长序列),形状为 [n_instances, n_dimensions, series_length]
或任何其他支持的
Panel
mtype
mtypes 列表,请参阅
datatypes.SCITYPE_REGISTER
详细规范,请参阅
examples/AA_datatypes_and_datasets.ipynb
并非所有评估器都支持具有多元或不等长序列的面板,详细信息请参阅标签参考。
- ysktime 兼容的表格数据容器,Table scitype
1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions],用于拟合的类别标签。第 0 个索引对应于 X 中的实例索引,第 1 个索引(如果适用)对应于 X 中的多输出向量索引。支持的 sktime 类型:np.ndarray (1D, 2D), pd.Series, pd.DataFrame
- cvNone,int 或 sklearn 交叉验证对象,可选,默认值=None
None : 预测是样本内预测,等同于
fit(X, y).predict(X)
cv : 预测等同于
fit(X_train, y_train).predict(X_test)
,其中多个X_train
,y_train
,X_test
从cv
折叠中获得。返回的y
是所有测试折叠预测的并集,cv
测试折叠必须不相交int : 等同于
cv=KFold(cv, shuffle=True, random_state=x)
,即 k 折交叉验证样本外预测,并且random_state
x
如果存在则取自self
,否则x=None
- change_statebool,可选 (默认值=True)
如果为 False,将不会改变分类器的状态,即 fit/predict 序列使用副本运行,self 不会改变
如果为 True,将把 self 拟合到完整的 X 和 y,最终状态将等同于运行 fit(X, y)
- 返回:
- y_pred2D np.array 的 int 类型,形状为 [n_instances, n_classes]
预测的类别标签概率。第 0 个索引对应于 X 中的实例索引,第 1 个索引对应于类别索引,顺序与
self.classes_
中的条目相同。条目是预测的类别概率,总和为 1
- classmethod get_class_tag(tag_name, tag_value_default=None)[source]#
从类中获取类标签值,带有父类的标签级别继承。
每个
scikit-base
兼容对象都有一个标签字典,用于存储有关对象的元数据。get_class_tag
方法是一个类方法,它仅考虑类级别标签值和覆盖来检索标签的值。它从对象中返回名称为
tag_name
的标签的值,考虑标签覆盖,优先级从高到低依次是:类中
_tags
属性中设置的标签。父类中
_tags
属性中设置的标签,
按照继承顺序。
不考虑在实例上通过
set_tags
或clone_tags
设置的动态标签覆盖。要检索可能具有实例覆盖的标签值,请改用
get_tag
方法。- 参数:
- tag_namestr
标签值的名称。
- tag_value_default任意类型
如果未找到标签,则为默认/备用值。
- 返回:
- tag_value
self
中tag_name
标签的值。如果未找到,则返回tag_value_default
。
- classmethod get_class_tags()[source]#
从类中获取类标签,带有父类的标签级别继承。
每个
scikit-base
兼容对象都有一个标签字典。标签可用于存储有关对象的元数据,或控制对象的行为。标签是特定于实例
self
的键值对,它们是静态标志,在对象构造后不会更改。get_class_tags
方法是一个类方法,它仅考虑类级别标签值和覆盖来检索标签的值。它返回一个字典,其键是类或其任何父类中设置的
_tags
任何属性的键。值是相应的标签值,按照优先级从高到低依次为覆盖:
类中
_tags
属性中设置的标签。父类中
_tags
属性中设置的标签,
按照继承顺序。
实例可以根据超参数覆盖这些标签。
要包含来自动态标签的覆盖,请使用
get_tags
。不考虑在实例上通过
set_tags
或clone_tags
设置的动态标签覆盖。要包含来自动态标签的覆盖,请使用
get_tags
。- collected_tagsdict
标签名称 : 标签值对字典。通过嵌套继承从
_tags
类属性收集。不会被通过set_tags
或clone_tags
设置的动态标签覆盖。
- get_config()[source]#
获取 self 的配置标志。
配置是
self
的键值对,通常用作控制行为的瞬时标志。get_config
返回动态配置,这些配置会覆盖默认配置。默认配置在类或其父类的
_config
类属性中设置,并通过set_config
设置的动态配置覆盖。配置在
clone
或reset
调用下保留。- 返回:
- config_dictdict
配置名称 : 配置值对字典。通过嵌套继承从 _config 类属性收集,然后收集来自 _onfig_dynamic 对象属性的任何覆盖和新标签。
- get_fitted_params(deep=True)[source]#
获取拟合参数。
- 所需状态
要求状态为“已拟合”。
- 参数:
- deepbool,默认值=True
是否返回组件的拟合参数。
如果为 True,将返回此对象的参数名称 : 值字典,包括可拟合组件(= BaseEstimator 值参数)的拟合参数。
如果为 False,将返回此对象的参数名称 : 值字典,但不包括组件的拟合参数。
- 返回:
- fitted_paramsstr 值键的 dict
拟合参数字典,paramname : paramvalue 键值对包括
始终:此对象的所有拟合参数,通过
get_param_names
获取,值是此对象该键的拟合参数值如果
deep=True
,还包含组件参数的键/值对。组件参数通过[componentname]__[paramname]
索引。componentname
的所有参数都以paramname
及其值出现如果
deep=True
,还包含任意级别的组件递归,例如[componentname]__[componentcomponentname]__[paramname]
等
- classmethod get_param_defaults()[source]#
获取对象的默认参数。
- 返回:
- default_dict: dict[str, Any]
键是
cls
中在__init__
中定义了默认值的所有参数。值是在__init__
中定义的默认值。
- classmethod get_param_names(sort=True)[source]#
获取对象的参数名称。
- 参数:
- sortbool,默认值=True
是否按字母顺序排序返回参数名称 (True),或按它们在类
__init__
中出现的顺序返回 (False)。
- 返回:
- param_names: list[str]
cls
的参数名称列表。如果sort=False
,顺序与它们在类__init__
中出现的顺序相同。如果sort=True
,则按字母顺序排列。
- get_params(deep=True)[source]#
获取此对象的参数值字典。
- 参数:
- deepbool,默认值=True
是否返回组件的参数。
如果为
True
,将返回此对象的参数名称 : 值dict
,包括组件(=BaseObject
值参数)的参数。如果为
False
,将返回此对象的参数名称 : 值dict
,但不包括组件的参数。
- 返回:
- paramsstr 值键的 dict
参数字典,paramname : paramvalue 键值对包括
始终:此对象的所有参数,通过
get_param_names
获取,值是此对象该键的参数值,值始终与构造时传递的值相同如果
deep=True
,还包含组件参数的键/值对。组件参数通过[componentname]__[paramname]
索引。componentname
的所有参数都以paramname
及其值出现如果
deep=True
,还包含任意级别的组件递归,例如[componentname]__[componentcomponentname]__[paramname]
等
- get_tag(tag_name, tag_value_default=None, raise_error=True)[source]#
从实例获取标签值,带有标签级别继承和覆盖。
每个
scikit-base
兼容对象都有一个标签字典。标签可用于存储有关对象的元数据,或控制对象的行为。标签是特定于实例
self
的键值对,它们是静态标志,在对象构造后不会更改。get_tag
方法从实例中检索名称为tag_name
的单个标签的值,考虑标签覆盖,优先级从高到低依次是:在实例上通过
set_tags
或clone_tags
设置的标签,
在实例构造时。
类中
_tags
属性中设置的标签。父类中
_tags
属性中设置的标签,
按照继承顺序。
- 参数:
- tag_namestr
要检索的标签名称
- tag_value_default任意类型,可选;默认值=None
如果未找到标签,则为默认/备用值
- raise_errorbool
未找到标签时是否引发
ValueError
- 返回:
- tag_valueAny
self
中tag_name
标签的值。如果未找到,并且raise_error
为 True,则引发错误,否则返回tag_value_default
。
- 引发:
- ValueError,如果
raise_error
为True
。 如果
tag_name
不在self.get_tags().keys()
中,则引发ValueError
。
- ValueError,如果
- get_tags()[source]#
从实例获取标签,带有标签级别继承和覆盖。
每个
scikit-base
兼容对象都有一个标签字典。标签可用于存储有关对象的元数据,或控制对象的行为。标签是特定于实例
self
的键值对,它们是静态标志,在对象构造后不会更改。get_tags
方法返回一个标签字典,其键是类或其任何父类中设置的_tags
任何属性的键,或通过set_tags
或clone_tags
设置的标签。值是相应的标签值,按照优先级从高到低依次为覆盖:
在实例上通过
set_tags
或clone_tags
设置的标签,
在实例构造时。
类中
_tags
属性中设置的标签。父类中
_tags
属性中设置的标签,
按照继承顺序。
- 返回:
- collected_tagsdict
标签名称 : 标签值对字典。通过嵌套继承从
_tags
类属性收集,然后收集来自_tags_dynamic
对象属性的任何覆盖和新标签。
- is_composite()[source]#
检查对象是否由其他 BaseObjects 组成。
复合对象是一个包含对象作为参数的对象。在实例上调用,因为这可能因实例而异。
- 返回:
- composite: bool
对象是否具有任何其值是
BaseObject
后代实例的参数。
- 属性 is_fitted[source]#
是否已调用
fit
。检查对象在对象构造期间应初始化为
False
并在调用对象的 fit 方法时设置为 True 的_is_fitted
属性。- 返回:
- bool
评估器是否已 fit。
- classmethod load_from_path(serial)[source]#
从文件位置加载对象。
- 参数:
- serialZipFile(path).open(“object) 的结果
- 返回:
- 反序列化的 self,结果输出到
path
,来自cls.save(path)
- 反序列化的 self,结果输出到
- classmethod load_from_serial(serial)[source]#
从序列化内存容器加载对象。
- 参数:
- serial
cls.save(None)
输出的第一个元素
- serial
- 返回:
- 反序列化的 self,结果输出
serial
,来自cls.save(None)
- 反序列化的 self,结果输出
- predict(X)[source]#
预测 X 中序列的标签。
- 参数:
- Xsktime 兼容的时间序列面板数据容器,属于 Panel scitype
用于预测标签的时间序列。
可以是
Panel
scitype 的任何 mtype,例如pd-multiindex: pd.DataFrame,其中 columns = 变量,index = pd.MultiIndex,第一层 = 实例索引,第二层 = 时间索引
numpy3D: 3D np.array (任意维数,等长序列),形状为 [n_instances, n_dimensions, series_length]
或任何其他支持的
Panel
mtype
mtypes 列表,请参阅
datatypes.SCITYPE_REGISTER
详细规范,请参阅
examples/AA_datatypes_and_datasets.ipynb
并非所有评估器都支持具有多元或不等长序列的面板,详细信息请参阅标签参考。
- 返回:
- y_predsktime 兼容的表格数据容器,属于 Table scitype
预测的类别标签
1D 可迭代对象,形状为 [n_instances],或 2D 可迭代对象,形状为 [n_instances, n_dimensions]。
第 0 个索引对应于 X 中的实例索引,第 1 个索引(如果适用)对应于 X 中的多输出向量索引。
如果 y 是单变量(一维),则为 1D np.npdarray;否则,与 fit 中传入的 y 类型相同
- predict_proba(X)[source]#
预测 X 中序列的标签概率。
- 参数:
- Xsktime 兼容的时间序列面板数据容器,属于 Panel scitype
用于预测标签的时间序列。
可以是
Panel
scitype 的任何 mtype,例如pd-multiindex: pd.DataFrame,其中 columns = 变量,index = pd.MultiIndex,第一层 = 实例索引,第二层 = 时间索引
numpy3D: 3D np.array (任意维数,等长序列),形状为 [n_instances, n_dimensions, series_length]
或任何其他支持的
Panel
mtype
mtypes 列表,请参阅
datatypes.SCITYPE_REGISTER
详细规范,请参阅
examples/AA_datatypes_and_datasets.ipynb
并非所有评估器都支持具有多元或不等长序列的面板,详细信息请参阅标签参考。
- 返回:
- y_pred2D np.array 的 int 类型,形状为 [n_instances, n_classes]
预测的类别标签概率。第 0 个索引对应于 X 中的实例索引,第 1 个索引对应于类别索引,顺序与
self.classes_
中的条目相同。条目是预测的类别概率,总和为 1
- reset()[source]#
将对象重置为干净的初始化后状态。
将
self
设置回构造函数调用后的状态,具有相同的超参数。通过set_config
设置的配置值也保留。reset
调用会删除任何对象属性,除了超参数 = 写入
self
的__init__
参数,例如self.paramname
,其中paramname
是__init__
的一个参数包含双下划线的对象属性,即字符串“__”。例如,名为“__myattr”的属性会保留。
配置属性,配置保持不变。也就是说,在
reset
前后get_config
的结果是相等的。
类和对象方法,以及类属性也不受影响。
等同于
clone
,但reset
会改变self
而不是返回一个新对象。在调用
self.reset()
后,self
在值和状态上与构造函数调用 ``type(self)(**self.get_params(deep=False))`` 后获得的对象相等。- 返回:
- self
类的实例重置为干净的初始化后状态,但保留当前的超参数值。
- save(path=None, serialization_format='pickle')[source]#
将序列化的 self 保存到字节类对象或 (.zip) 文件。
行为:如果
path
为 None,则返回一个内存中的序列化 self;如果path
是文件位置,则将 self 作为 zip 文件存储在该位置保存的文件是 zip 文件,包含以下内容: _metadata - 包含自身的类,即 type(self) _obj - 序列化后的自身。此类使用默认序列化方式 (pickle)。
- 参数:
- pathNone 或文件位置 (str 或 Path)
如果为 None,则自身保存到内存对象中;如果为文件位置,则自身保存到该文件位置。如果
path=”estimator” 则会在当前工作目录 (cwd) 中创建一个 zip 文件
estimator.zip
。path=”/home/stored/estimator” 则会创建一个 zip 文件
estimator.zip
,并
存储在
/home/stored/
中。- serialization_format: str,默认值 = “pickle”
用于序列化的模块。可用选项有“pickle”和“cloudpickle”。请注意,非默认格式可能需要安装其他软依赖。
- 返回:
- 如果
path
为 None - 内存中序列化的自身 - 如果
path
为文件位置 - ZipFile,包含对该文件的引用
- 如果
- score(X, y) float [source]#
在 X 上根据真实标签对预测标签评分。
- 参数:
- Xsktime 兼容的时间序列面板数据容器,属于 Panel scitype
用于预测标签得分的时间序列数据。
可以是
Panel
scitype 的任何 mtype,例如pd-multiindex: pd.DataFrame,其中 columns = 变量,index = pd.MultiIndex,第一层 = 实例索引,第二层 = 时间索引
numpy3D: 3D np.array (任意维数,等长序列),形状为 [n_instances, n_dimensions, series_length]
或任何其他支持的
Panel
mtype
mtypes 列表,请参阅
datatypes.SCITYPE_REGISTER
详细规范,请参阅
examples/AA_datatypes_and_datasets.ipynb
并非所有评估器都支持具有多元或不等长序列的面板,详细信息请参阅标签参考。
- ysktime 兼容的表格数据容器,Table scitype
1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions],用于拟合的类别标签。第 0 个索引对应于 X 中的实例索引,第 1 个索引(如果适用)对应于 X 中的多输出向量索引。支持的 sktime 类型:np.ndarray (1D, 2D), pd.Series, pd.DataFrame
- 返回:
- 浮点数,predict(X) 与 y 相比的准确率得分
- set_config(**config_dict)[source]#
将配置标志设置为给定值。
- 参数:
- config_dictdict
配置名称 : 配置值对的字典。有效的配置、值及其含义列在下方
- displaystr,“diagram”(默认)或“text”
jupyter kernel 如何显示自身实例
“diagram” = html 框图表示
“text” = 字符串打印输出
- print_changed_onlybool,默认值=True
打印自身时,是仅列出与默认值不同的自身参数(True),还是列出所有参数名称和值(False)。不嵌套,即仅影响自身,不影响组件估计器。
- warningsstr,“on”(默认)或“off”
是否引发警告,仅影响来自 sktime 的警告
“on” = 将引发来自 sktime 的警告
“off” = 将不引发来自 sktime 的警告
- backend:parallelstr,可选,默认值=”None”
在广播/向量化时用于并行处理的后端,可选值之一:
“None”:顺序执行循环,简单的列表推导式
“loky”、“multiprocessing” 和 “threading”:使用
joblib.Parallel
“joblib”:自定义和第三方
joblib
后端,例如spark
“dask”:使用
dask
,需要在环境中安装dask
包“ray”:使用
ray
,需要在环境中安装ray
包
- backend:parallel:paramsdict,可选,默认值={}(不传递参数)
作为配置传递给并行化后端的附加参数。有效键取决于
backend:parallel
的值“None”:无附加参数,忽略
backend_params
“loky”、“multiprocessing” 和 “threading”:默认的
joblib
后端。此处可传递joblib.Parallel
的任何有效键,例如n_jobs
,但backend
除外,它由backend
直接控制。如果未传递n_jobs
,则默认值为-1
,其他参数将使用joblib
的默认值。“joblib”:自定义和第三方
joblib
后端,例如spark
。此处可传递joblib.Parallel
的任何有效键,例如n_jobs
。在此情况下,backend
必须作为backend_params
的一个键传递。如果未传递n_jobs
,则默认值为-1
,其他参数将使用joblib
的默认值。“dask”:可传递
dask.compute
的任何有效键,例如scheduler
“ray”:可传递以下键
“ray_remote_args”:
ray.init
的有效键字典- “shutdown_ray”:bool,默认值=True;False 可防止
ray
在并行化后 关闭。
- “shutdown_ray”:bool,默认值=True;False 可防止
“logger_name”:str,默认值=”ray”;要使用的日志记录器名称。
“mute_warnings”:bool,默认值=False;如果为 True,则抑制警告
- 返回:
- self对自身的引用。
注意
更改对象状态,将 config_dict 中的配置复制到 self._config_dynamic。
- set_params(**params)[source]#
设置此对象的参数。
此方法适用于简单的 skbase 对象以及复合对象。对于复合对象(即包含其他对象的对象),可以使用参数键字符串
<component>__<parameter>
来访问组件<component>
中的<parameter>
。如果引用明确(例如,没有两个组件参数同名),也可以使用不带<component>__
的字符串<parameter>
。- 参数:
- **paramsdict
BaseObject 参数,键必须是
<component>__<parameter>
字符串。如果__
后缀在 get_params 键中是唯一的,则可作为完整字符串的别名。
- 返回:
- self对自身的引用(参数设置后)
- set_random_state(random_state=None, deep=True, self_policy='copy')[source]#
为 self 设置 random_state 伪随机种子参数。
通过
self.get_params
查找名为random_state
的参数,并使用set_params
将它们设置为从random_state
派生的整数。这些整数通过sample_dependent_seed
从链式哈希中采样,并保证 seeded 随机生成器的伪随机独立性。根据
self_policy
应用于self
中的random_state
参数,并且仅在deep=True
时应用于剩余组件对象。注意:即使
self
没有random_state
参数,或者任何组件都没有random_state
参数,也会调用set_params
。因此,set_random_state
将重置任何scikit-base
对象,即使是没有random_state
参数的对象。- 参数:
- random_stateint, RandomState 实例或 None,默认值=None
伪随机数生成器,用于控制随机整数的生成。传递 int 可在多次函数调用中获得可复现的输出。
- deepbool,默认值=True
是否设置 skbase 对象值参数(即组件估计器)中的随机状态。
如果为 False,则仅设置
self
的random_state
参数(如果存在)。如果为 True,则也会设置组件对象中的
random_state
参数。
- self_policystr,可选值之一 {“copy”, “keep”, “new”},默认值=”copy”
“copy” :
self.random_state
设置为输入的random_state
“keep” :
self.random_state
保持不变“new” :
self.random_state
设置为一个新的随机状态,
派生自输入的
random_state
,通常与输入不同
- 返回:
- self对自身的引用
- classmethod set_tags(**tag_dict)[source]#
将实例级别标签覆盖设置为给定值。
每个
scikit-base
兼容对象都有一个标签字典,用于存储有关对象的元数据。标签是特定于实例
self
的键值对,它们是对象构建后不更改的静态标志。它们可用于元数据检查或控制对象的行为。set_tags
将动态标签覆盖设置为tag_dict
中指定的值,其中键是标签名称,字典值是要将标签设置为的值。set_tags
方法只能在对象的__init__
方法中、构建期间或通过__init__
直接调用后调用。当前标签值可以通过
get_tags
或get_tag
检查。- 参数:
- **tag_dictdict
标签名称 : 标签值对的字典。
- 返回:
- 自身
对自身的引用。
- classmethod get_test_params(parameter_set='default')[source]#
返回评估器的测试参数设置。
- 参数:
- parameter_setstr,默认值=”default”
要返回的测试参数集的名称,用于测试。如果未为某个值定义特殊参数,将返回
"default"
集。对于分类器,应提供一组“default”参数用于通用测试,如果通用集未生成适合比较的概率,则提供一组“results_comparison”参数用于与先前记录的结果进行比较。
- 返回:
- paramsdict 或 dict 列表,默认值={}
用于创建类测试实例的参数。每个 dict 都是构造一个“有趣”测试实例的参数,即
MyClass(**params)
或MyClass(**params[i])
创建一个有效的测试实例。create_test_instance
使用params
中的第一个(或唯一一个)字典。