Reconciler#

class Reconciler(method='bu')[source]#

层级调和转换器。

层级调和是一种转换,用于确保时间序列层级结构中的预测值能够正确地汇总。

此类中实现的方法仅需要层级结构或预测值来进行调和。

这些函数旨在用于转换层级预测值,即在预测之后。然而,它们是通用的,也可用于转换层级时间序列数据。

对于除了预测值外还需要历史值的调和方法,例如 MinT,请参阅 ReconcilerForecaster 类。

有关这些方法的更多信息,请参阅 [1]

参数:
method{“bu”, “ols”, “wls_str”, “td_fcst”},默认值=”bu”

应用于预测值的调和方法

  • "bu" - 自下而上

  • "ols" - 普通最小二乘法

  • "wls_str" - 加权最小二乘法(结构性)

  • "td_fcst" - 基于(预测)比例的自上而下法

属性:
is_fitted

是否已调用 fit 方法。

另请参阅

Aggregator
ReconcilerForecaster

参考文献

示例

>>> from sktime.forecasting.trend import PolynomialTrendForecaster
>>> from sktime.transformations.hierarchical.reconcile import Reconciler
>>> from sktime.transformations.hierarchical.aggregate import Aggregator
>>> from sktime.utils._testing.hierarchical import _bottom_hier_datagen
>>> agg = Aggregator()
>>> y = _bottom_hier_datagen(
...     no_bottom_nodes=3,
...     no_levels=1,
...     random_seed=123,
... )
>>> y = agg.fit_transform(y)
>>> forecaster = PolynomialTrendForecaster()
>>> forecaster.fit(y)
PolynomialTrendForecaster(...)
>>> prds = forecaster.predict(fh=[1])
>>> # reconcile forecasts
>>> reconciler = Reconciler(method="ols")
>>> prds_recon = reconciler.fit_transform(prds)

方法

check_is_fitted([method_name])

检查评估器是否已拟合。

clone()

获取具有相同超参数和配置的对象的克隆。

clone_tags(estimator[, tag_names])

将标签从另一个对象克隆为动态覆盖。

create_test_instance([parameter_set])

使用第一个测试参数集构造类的实例。

create_test_instances_and_names([parameter_set])

创建所有测试实例的列表及其名称列表。

fit(X[, y])

使用 X 拟合转换器,y 可选。

fit_transform(X[, y])

拟合数据,然后进行转换。

get_class_tag(tag_name[, tag_value_default])

从类中获取类标签值,带有来自父类的标签级别继承。

get_class_tags()

从类中获取类标签,带有来自父类的标签级别继承。

get_config()

获取自身的配置标志。

get_fitted_params([deep])

获取已拟合参数。

get_param_defaults()

获取对象的默认参数。

get_param_names([sort])

获取对象的参数名称。

get_params([deep])

获取此对象的参数值字典。

get_tag(tag_name[, tag_value_default, ...])

从实例中获取标签值,带有标签级别继承和覆盖。

get_tags()

从实例中获取标签,带有标签级别继承和覆盖。

get_test_params()

返回评估器的测试参数设置。

inverse_transform(X[, y])

对 X 进行逆转换并返回逆转换后的版本。

is_composite()

检查对象是否由其他 BaseObjects 组成。

load_from_path(serial)

从文件位置加载对象。

load_from_serial(serial)

从序列化内存容器加载对象。

reset()

将对象重置到干净的初始化后状态。

save([path, serialization_format])

将序列化的自身保存到字节类对象或 (.zip) 文件。

set_config(**config_dict)

将配置标志设置为给定值。

set_params(**params)

设置此对象的参数。

set_random_state([random_state, deep, ...])

设置自身的 random_state 伪随机种子参数。

set_tags(**tag_dict)

将实例级别标签覆盖设置为给定值。

transform(X[, y])

转换 X 并返回转换后的版本。

update(X[, y, update_params])

使用 X 更新转换器,y 可选。

classmethod get_test_params()[source]#

返回评估器的测试参数设置。

返回:
paramsdict,默认值 = {}

用于创建类的测试实例的参数。每个字典都是用于构造一个“有趣”测试实例的参数,即 MyClass(**params)MyClass(**params[i]) 创建一个有效的测试实例。create_test_instance 使用 params 中的第一个(或唯一一个)字典。

check_is_fitted(method_name=None)[source]#

检查评估器是否已拟合。

检查评估器的 _is_fitted 属性是否存在且为 Trueis_fitted 属性应在调用对象的 fit 方法时设置为 True

如果不是,则引发 NotFittedError

参数:
method_namestr,可选

调用此函数的方法的名称。如果提供,错误消息将包含此信息。

引发:
NotFittedError

如果评估器尚未拟合。

clone()[source]#

获取具有相同超参数和配置的对象的克隆。

克隆是一个不同的对象,没有共享引用,处于初始化后状态。此函数等同于返回 selfsklearn.clone

等同于构造 type(self) 的新实例,使用 self 的参数,即 type(self)(**self.get_params(deep=False))

如果在 self 上设置了配置,克隆也将具有与原始对象相同的配置,等同于调用 cloned_self.set_config(**self.get_config())

在值上也等同于调用 self.reset,区别在于 clone 返回一个新对象,而不是像 reset 那样改变 self

引发:
如果克隆不符合规范,由错误的 __init__ 引起,则引发 RuntimeError。
clone_tags(estimator, tag_names=None)[source]#

将标签从另一个对象克隆为动态覆盖。

每个 scikit-base 兼容对象都有一个标签字典。标签可用于存储关于对象的元数据,或控制对象的行为。

标签是特定于实例 self 的键值对,它们是对象构造后不会更改的静态标志。

clone_tags 从另一个对象 estimator 设置动态标签覆盖。

clone_tags 方法应仅在对象的 __init__ 方法中调用,在构造期间,或通过 __init__ 直接在构造之后调用。

动态标签设置为 estimator 中指定名称 tag_names 的标签值。

tag_names 的默认值将所有标签从 estimator 写入 self

可以通过 get_tagsget_tag 检查当前标签值。

参数:
estimator::class:BaseObject 的实例或派生类
tag_namesstr 或 str 列表,默认值 = None

要克隆的标签名称。默认值 (None) 克隆 estimator 中的所有标签。

返回:
self

self 的引用。

classmethod create_test_instance(parameter_set='default')[source]#

使用第一个测试参数集构造类的实例。

参数:
parameter_setstr,默认值=”default”

要返回的测试参数集的名称,用于测试。如果某个值没有定义特殊参数,将返回 “default” 集。

返回:
instance:带有默认参数的类实例
classmethod create_test_instances_and_names(parameter_set='default')[source]#

创建所有测试实例的列表及其名称列表。

参数:
parameter_setstr,默认值=”default”

要返回的测试参数集的名称,用于测试。如果某个值没有定义特殊参数,将返回 “default” 集。

返回:
objs:cls 实例的列表

第 i 个实例是 cls(**cls.get_test_params()[i])

names:str 列表,长度与 objs 相同

第 i 个元素是测试中 obj 的第 i 个实例的名称。命名约定是如果实例多于一个,则为 {cls.__name__}-{i},否则为 {cls.__name__}

fit(X, y=None)[source]#

使用 X 拟合转换器,y 可选。

状态改变

将状态更改为“已拟合”。

写入自身

  • 设置以“_”结尾的已拟合模型属性,已拟合属性可通过 get_fitted_params 进行检查。

  • self.is_fitted 标志设置为 True

  • 如果 self.get_tag("remember_data")True,则将 X 记忆为 self._X,并强制转换为 self.get_tag("X_inner_mtype")

参数:
Xsktime 兼容数据容器格式的时间序列

用于拟合转换的数据。

sktime 中的独立数据格式称为 mtype 规范,每个 mtype 实现一个抽象的 scitype

  • Series scitype = 单个时间序列。pd.DataFramepd.Seriesnp.ndarray (1D 或 2D)

  • Panel scitype = 时间序列集合。pd.DataFrame 带有 2 级行 MultiIndex (实例, 时间)3D np.ndarray (实例, 变量, 时间)list 类型的 Series pd.DataFrame

  • Hierarchical scitype = 时间序列的层级集合。pd.DataFrame 带有 3 级或更多行 MultiIndex (层级_1, ..., 层级_n, 时间)

有关数据格式的更多详细信息,请参阅关于 mtype 的术语表。有关用法,请参阅转换器教程 examples/03_transformers.ipynb

y:可选,sktime 兼容数据格式的数据,默认值=None

额外数据,例如用于转换的标签。如果 self.get_tag("requires_y")True,则必须在 fit 中传递,不可选。有关所需格式,请参阅类文档字符串了解详细信息。

返回:
self:评估器的一个已拟合实例
fit_transform(X, y=None)[source]#

拟合数据,然后进行转换。

将转换器拟合到 X 和 y,并返回 X 的转换版本。

状态改变

将状态更改为“已拟合”。

写入自身: _is_fitted : 标志设置为 True. _X : X, X 的强制转换副本, 如果 remember_data 标签为 True

如果可能,可能会强制转换为内部类型或通过引用转换为 update_data 兼容类型

模型属性(以“_”结尾):取决于评估器

参数:
Xsktime 兼容数据容器格式的时间序列

用于拟合转换的数据,以及要转换的数据。

sktime 中的独立数据格式称为 mtype 规范,每个 mtype 实现一个抽象的 scitype

  • Series scitype = 单个时间序列。pd.DataFramepd.Seriesnp.ndarray (1D 或 2D)

  • Panel scitype = 时间序列集合。pd.DataFrame 带有 2 级行 MultiIndex (实例, 时间)3D np.ndarray (实例, 变量, 时间)list 类型的 Series pd.DataFrame

  • Hierarchical scitype = 时间序列的层级集合。pd.DataFrame 带有 3 级或更多行 MultiIndex (层级_1, ..., 层级_n, 时间)

有关数据格式的更多详细信息,请参阅关于 mtype 的术语表。有关用法,请参阅转换器教程 examples/03_transformers.ipynb

y:可选,sktime 兼容数据格式的数据,默认值=None

额外数据,例如用于转换的标签。如果 self.get_tag("requires_y")True,则必须在 fit 中传递,不可选。有关所需格式,请参阅类文档字符串了解详细信息。

返回:
X 的转换版本
类型取决于 X 的类型和 scitype:transform-output 标签
X | tf-output | 返回类型 |

|----------|————–|------------------------| | Series | Primitives | pd.DataFrame (1 行) | | Panel | Primitives | pd.DataFrame | | Series | Series | Series | | Panel | Series | Panel | | Series | Panel | Panel |

返回中的实例对应于 X 中的实例
表中未列出的组合目前不支持
具体说明,带示例
  • 如果 XSeries (例如,pd.DataFrame)

并且 transform-outputSeries,则返回的是一个相同 mtype 的单个 Series。示例:对单个序列进行去趋势

  • 如果 XPanel (例如,pd-multiindex) 并且 transform-output

Series,则返回的是一个 Panel,其实例数量与 X 相同(转换器应用于每个输入的 Series 实例)。示例:面板中的所有序列都被单独去趋势

  • 如果 XSeriesPanel 并且 transform-output

Primitives,则返回的是一个 pd.DataFrame,其行数与 X 中的实例数相同。示例:返回值的第 i 行包含第 i 个序列的均值和方差

  • 如果 XSeries 并且 transform-outputPanel

则返回的是一个 pd-multiindex 类型的 Panel 对象。示例:输出的第 i 个实例是运行在 X 上的第 i 个窗口

classmethod get_class_tag(tag_name, tag_value_default=None)[source]#

从类中获取类标签值,带有来自父类的标签级别继承。

每个 scikit-base 兼容对象都有一个标签字典,用于存储关于对象的元数据。

get_class_tag 方法是一个类方法,它仅考虑类级别标签值和覆盖来检索标签的值。

它从对象中返回名称为 tag_name 的标签的值,考虑标签覆盖,优先级从高到低如下:

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按照继承顺序。

不考虑在实例上通过 set_tagsclone_tags 设置的动态标签覆盖,这些覆盖是在实例上定义的。

要检索带有潜在实例覆盖的标签值,请改用 get_tag 方法。

参数:
tag_name:str

标签值的名称。

tag_value_default:任何类型

如果未找到标签的默认/备用值。

返回:
tag_value

selftag_name 标签的值。如果未找到,则返回 tag_value_default

classmethod get_class_tags()[source]#

从类中获取类标签,带有来自父类的标签级别继承。

每个 scikit-base 兼容对象都有一个标签字典。标签可用于存储关于对象的元数据,或控制对象的行为。

标签是特定于实例 self 的键值对,它们是对象构造后不会更改的静态标志。

get_class_tags 方法是一个类方法,它仅考虑类级别标签值和覆盖来检索标签的值。

它返回一个字典,其键是类或其任何父类中设置的任何 _tags 属性的键。

值是相应的标签值,覆盖顺序从高到低如下:

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按照继承顺序。

实例可以根据超参数覆盖这些标签。

要检索带有潜在实例覆盖的标签,请改用 get_tags 方法。

不考虑在实例上通过 set_tagsclone_tags 设置的动态标签覆盖,这些覆盖是在实例上定义的。

要包含来自动态标签的覆盖,请使用 get_tags

collected_tags:dict

标签名称:标签值对的字典。通过嵌套继承从 _tags 类属性收集。不受通过 set_tagsclone_tags 设置的动态标签覆盖。

get_config()[source]#

获取自身的配置标志。

配置是 self 的键值对,通常用作控制行为的瞬时标志。

get_config 返回动态配置,这些配置会覆盖默认配置。

默认配置设置在类或其父类的类属性 _config 中,并被通过 set_config 设置的动态配置覆盖。

配置在 clonereset 调用下保留。

返回:
config_dict:dict

配置名称:配置值对的字典。通过嵌套继承从 _config 类属性收集,然后从 _onfig_dynamic 对象属性收集任何覆盖和新标签。

get_fitted_params(deep=True)[source]#

获取已拟合参数。

所需状态

需要状态为“已拟合”。

参数:
deep:bool,默认值=True

是否返回组件的已拟合参数。

  • 如果为 True,将返回此对象的参数名称:值字典,包括可拟合组件的已拟合参数(= BaseEstimator 类型参数)。

  • 如果为 False,将返回此对象的参数名称:值字典,但不包括组件的已拟合参数。

返回:
fitted_params:带有 str 类型键的 dict

已拟合参数的字典,paramname:paramvalue 键值对包括

  • 总是:此对象的所有已拟合参数,如同通过 get_param_names 获取;值是该键对应的此对象的已拟合参数值

  • 如果 deep=True,还包含组件参数的键值对;组件的参数索引为 [组件名称]__[参数名称]组件名称 的所有参数以 参数名称 及其值出现

  • 如果 deep=True,还包含任意级别的组件递归,例如 [组件名称]__[子组件名称]__[参数名称]

classmethod get_param_defaults()[source]#

获取对象的默认参数。

返回:
default_dict: dict[str, Any]

键是 cls 中所有在 __init__ 中定义了默认值的参数。值是默认值,如在 __init__ 中定义。

classmethod get_param_names(sort=True)[source]#

获取对象的参数名称。

参数:
sort:bool,默认值=True

是否按字母顺序(True)或按它们在类 __init__ 中出现的顺序(False)返回参数名称。

返回:
param_names: list[str]

cls 的参数名称列表。如果 sort=False,则按它们在类 __init__ 中出现的相同顺序排列。如果 sort=True,则按字母顺序排列。

get_params(deep=True)[source]#

获取此对象的参数值字典。

参数:
deep:bool,默认值=True

是否返回组件的参数。

  • 如果为 True,将返回此对象的参数名称:值 dict,包括组件的参数(= BaseObject 类型参数)。

  • 如果为 False,将返回此对象的参数名称:值 dict,但不包括组件的参数。

返回:
params:带有 str 类型键的 dict

参数字典,paramname:paramvalue 键值对包括

  • 总是:此对象的所有参数,如同通过 get_param_names 获取;值是该键对应的此对象的参数值;值始终与构造时传递的值相同

  • 如果 deep=True,还包含组件参数的键值对;组件的参数索引为 [组件名称]__[参数名称]组件名称 的所有参数以 参数名称 及其值出现

  • 如果 deep=True,还包含任意级别的组件递归,例如 [组件名称]__[子组件名称]__[参数名称]

get_tag(tag_name, tag_value_default=None, raise_error=True)[source]#

从实例中获取标签值,带有标签级别继承和覆盖。

每个 scikit-base 兼容对象都有一个标签字典。标签可用于存储关于对象的元数据,或控制对象的行为。

标签是特定于实例 self 的键值对,它们是对象构造后不会更改的静态标志。

get_tag 方法从实例中检索名称为 tag_name 的单个标签的值,考虑标签覆盖,优先级从高到低如下:

  1. 在实例上通过 set_tagsclone_tags 设置的标签,

在实例构造时。

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按照继承顺序。

参数:
tag_name:str

要检索的标签名称

tag_value_default:任何类型,可选;默认值=None

如果未找到标签的默认/备用值

raise_error:bool

当未找到标签时是否引发 ValueError

返回:
tag_value:Any

selftag_name 标签的值。如果未找到,则在 raise_error 为 True 时引发错误,否则返回 tag_value_default

引发:
ValueError,如果 raise_errorTrue

如果 tag_name 不在 self.get_tags().keys() 中,则会引发 ValueError

get_tags()[source]#

从实例中获取标签,带有标签级别继承和覆盖。

每个 scikit-base 兼容对象都有一个标签字典。标签可用于存储关于对象的元数据,或控制对象的行为。

标签是特定于实例 self 的键值对,它们是对象构造后不会更改的静态标志。

get_tags 方法返回一个标签字典,其中键是类或其任何父类中设置的任何 _tags 属性的键,或是通过 set_tagsclone_tags 设置的标签。

值是相应的标签值,覆盖顺序从高到低如下:

  1. 在实例上通过 set_tagsclone_tags 设置的标签,

在实例构造时。

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按照继承顺序。

返回:
collected_tagsdict

标签名称 : 标签值 对的字典。从 _tags 类属性通过嵌套继承收集,然后是来自 _tags_dynamic 对象属性的任何覆盖和新标签。

inverse_transform(X, y=None)[source]#

对 X 进行逆转换并返回逆转换后的版本。

目前假定只有具有以下标签的转换器

“scitype:transform-input”=”Series”, “scitype:transform-output”=”Series”,

具有 inverse_transform 方法。

所需状态

需要状态为“已拟合”。

访问 self 中的内容

  • 以“_”结尾的拟合模型属性。

  • self.is_fitted,必须为 True

参数:
Xsktime 兼容数据容器格式的时间序列

用于拟合转换的数据。

sktime 中的独立数据格式称为 mtype 规范,每个 mtype 实现一个抽象的 scitype

  • Series scitype = 单个时间序列。pd.DataFramepd.Seriesnp.ndarray (1D 或 2D)

  • Panel scitype = 时间序列集合。pd.DataFrame 带有 2 级行 MultiIndex (实例, 时间)3D np.ndarray (实例, 变量, 时间)list 类型的 Series pd.DataFrame

  • Hierarchical scitype = 时间序列的层级集合。pd.DataFrame 带有 3 级或更多行 MultiIndex (层级_1, ..., 层级_n, 时间)

有关数据格式的更多详细信息,请参阅关于 mtype 的术语表。有关用法,请参阅转换器教程 examples/03_transformers.ipynb

y:可选,sktime 兼容数据格式的数据,默认值=None

附加数据,例如用于转换的标签。某些转换器需要此项,详情请参见类文档字符串。

返回:
X 的逆转换版本

与 X 类型相同,并符合 mtype 格式规范

is_composite()[source]#

检查对象是否由其他 BaseObjects 组成。

复合对象是指包含其他对象作为参数的对象。在实例上调用,因为这可能因实例而异。

返回:
composite: bool

对象是否具有任何参数,其值是 BaseObject 的后代实例。

property is_fitted[source]#

是否已调用 fit 方法。

检查对象的 _is_fitted 属性,该属性应在对象构造期间初始化为 False,并在调用对象的 fit 方法时设置为 True。

返回:
bool

估计器是否已进行 fit 操作。

classmethod load_from_path(serial)[source]#

从文件位置加载对象。

参数:
serialZipFile(path).open(“object) 的结果
返回:
反序列化的 self,其结果输出到 path,是 cls.save(path) 的结果
classmethod load_from_serial(serial)[source]#

从序列化内存容器加载对象。

参数:
serialcls.save(None) 输出的第一个元素
返回:
反序列化的 self,其结果是输出 serial,是 cls.save(None) 的结果
reset()[source]#

将对象重置到干净的初始化后状态。

其结果是将 self 设置为其在构造函数调用后直接所处的状态,并保留相同的超参数。通过 set_config 设置的配置值也会被保留。

调用 reset 会删除任何对象属性,除了

  • 超参数 = 写入 self__init__ 参数,例如 self.paramname,其中 paramname__init__ 的一个参数

  • 包含双下划线的对象属性,即字符串“__”。例如,名为“__myattr”的属性会被保留。

  • 配置属性,配置保持不变。也就是说,在 reset 前后调用 get_config 的结果相等。

类方法、对象方法和类属性也保持不变。

clone 等效,但 reset 修改 self 而非返回新对象。

在调用 self.reset() 后,self 的值和状态与构造函数调用 ``type(self)(**self.get_params(deep=False))`` 后获得的对象相等。

返回:
self

类实例重置为干净的初始化后状态,但保留当前的超参数值。

save(path=None, serialization_format='pickle')[source]#

将序列化的自身保存到字节类对象或 (.zip) 文件。

行为:如果 path 为 None,则返回内存中序列化的 self;如果 path 是文件位置,则将 self 以 zip 文件的形式存储在该位置

保存的文件是包含以下内容的 zip 文件:_metadata - 包含 self 的类,即 type(self);_obj - 序列化的 self。此方法使用默认序列化(pickle)。

参数:
pathNone 或文件位置 (str 或 Path)

如果为 None,self 将保存到内存中的对象;如果为文件位置,self 将保存到该文件位置。

  • 如果 path=”estimator”,则将在当前工作目录创建 zip 文件 estimator.zip

  • 如果 path=”/home/stored/estimator”,则 zip 文件 estimator.zip 将存储在

/home/stored/ 中。

serialization_format: str, default = “pickle”

用于序列化的模块。可用选项为“pickle”和“cloudpickle”。请注意,非默认格式可能需要安装其他软依赖项。

返回:
如果 path 为 None - 内存中序列化的 self
如果 path 为文件位置 - ZipFile,其中包含对文件的引用
set_config(**config_dict)[source]#

将配置标志设置为给定值。

参数:
config_dict:dict

config 名称 : config 值 对的字典。有效的 configs、值及其含义如下所示

displaystr, “diagram” (默认), 或 “text”

jupyter 内核如何显示 self 的实例

  • “diagram” = html 框图表示

  • “text” = 字符串打印输出

print_changed_onlybool, default=True

打印 self 时是否仅列出与默认值不同的 self 参数 (True),或列出所有参数名称和值 (False)。不嵌套,即仅影响 self 而不影响组件估计器。

warningsstr, “on” (默认), 或 “off”

是否发出警告,仅影响来自 sktime 的警告

  • “on” = 将发出来自 sktime 的警告

  • “off” = 将不发出来自 sktime 的警告

backend:parallelstr, optional, default=”None”

广播/向量化时用于并行的后端,选项之一为

  • “None”: 按顺序执行循环,简单的列表推导

  • “loky”, “multiprocessing” 和 “threading”: 使用 joblib.Parallel

  • “joblib”: 自定义和第三方 joblib 后端,例如 spark

  • “dask”: 使用 dask,需要在环境中安装 dask

  • “ray”: 使用 ray,需要在环境中安装 ray

backend:parallel:paramsdict, optional, default={} (不传递参数)

作为配置传递给并行后端的附加参数。有效键取决于 backend:parallel 的值

  • “None”: 无附加参数,backend_params 被忽略

  • “loky”, “multiprocessing” 和 “threading”: 默认 joblib 后端,这里可以传递 joblib.Parallel 的任何有效键,例如 n_jobs,但 backend 除外,它由 backend 直接控制。如果未传递 n_jobs,将默认设置为 -1,其他参数将默认设置为 joblib 默认值。

  • “joblib”: 自定义和第三方 joblib 后端,例如 spark。这里可以传递 joblib.Parallel 的任何有效键,例如 n_jobs,在这种情况下,必须将 backend 作为 backend_params 的键传递。如果未传递 n_jobs,将默认设置为 -1,其他参数将默认设置为 joblib 默认值。

  • “dask”: 可以传递 dask.compute 的任何有效键,例如 scheduler

  • “ray”: 可以传递以下键

    • “ray_remote_args”: ray.init 的有效键字典

    • “shutdown_ray”: bool, default=True; False 防止 ray 在并行化后

      关闭。

    • “logger_name”: str, default=”ray”; 要使用的日志记录器名称。

    • “mute_warnings”: bool, default=False; 如果为 True,则抑制警告

input_conversionstr, 选项之一 “on” (默认), “off”, 或有效的 mtype 字符串

控制输入检查和转换,用于 _fit, _transform, _inverse_transform, _update

  • "on" - 执行输入检查和转换

  • "off" - 在将数据传递给内部方法之前不执行输入检查和转换

  • 有效的 mtype 字符串 - 假定输入为指定的 mtype,执行转换但不执行检查

output_conversionstr, 选项之一 “on”, “off”, 有效的 mtype 字符串

控制 _transform, _inverse_transform 的输出转换

  • "on" - 如果 input_conversion 为 “on”,则执行输出转换

  • "off" - 直接返回 _transform, _inverse_transform 的输出

  • 有效的 mtype 字符串 - 将输出转换为指定的 mtype

返回:
self对 self 的引用。

说明

更改对象状态,将 config_dict 中的 configs 复制到 self._config_dynamic。

set_params(**params)[source]#

设置此对象的参数。

此方法适用于简单的 skbase 对象以及复合对象。参数键字符串 <component>__<parameter> 可用于复合对象,即包含其他对象的对象,以访问组件 <component> 中的 <parameter>。如果引用明确,例如没有两个组件参数具有相同的名称 <parameter>,也可以使用不带 <component>__ 的字符串 <parameter>

参数:
**paramsdict

BaseObject 参数,键必须是 <component>__<parameter> 字符串。如果与 get_params 键中的其他字符串唯一,则 __ 后缀可以作为完整字符串的别名。

返回:
self对 self 的引用(参数设置后)
set_random_state(random_state=None, deep=True, self_policy='copy')[source]#

设置自身的 random_state 伪随机种子参数。

通过 self.get_params 查找名为 random_state 的参数,并通过 set_params 将它们设置为从 random_state 派生的整数。这些整数通过链式哈希从 sample_dependent_seed 中采样,并保证种子随机生成器的伪随机独立性。

根据 self_policy 应用于 self 中的 random_state 参数,并且仅当 deep=True 时应用于其余组件对象。

注意:即使 self 没有 random_state 参数,或者没有任何组件具有 random_state 参数,也会调用 set_params。因此,set_random_state 将重置任何 scikit-base 对象,即使是那些没有 random_state 参数的对象。

参数:
random_stateint, RandomState 实例或 None, default=None

伪随机数生成器,用于控制随机整数的生成。传递 int 可在多次函数调用中产生可复现的输出。

deep:bool,默认值=True

是否在 skbase 对象值参数中设置随机状态,即组件估计器。

  • 如果为 False,则仅设置 selfrandom_state 参数(如果存在)。

  • 如果为 True,则也会在组件对象中设置 random_state 参数。

self_policystr, 选项之一 {“copy”, “keep”, “new”}, default=”copy”
  • “copy” : self.random_state 设置为输入的 random_state

  • “keep” : self.random_state 保持不变

  • “new” : self.random_state 设置为一个新的随机状态,

从输入的 random_state 派生,通常与它不同

返回:
self对 self 的引用
set_tags(**tag_dict)[source]#

将实例级别标签覆盖设置为给定值。

每个 scikit-base 兼容对象都有一个标签字典,用于存储关于对象的元数据。

标签是特定于实例 self 的键值对,它们是对象构造后不变的静态标志。它们可用于元数据检查,或控制对象的行为。

set_tags 将动态标签覆盖设置为 tag_dict 中指定的值,其中键是标签名称,字典值是要设置的标签值。

应仅在对象的 __init__ 方法中、构造期间,或在通过 __init__ 构造后直接调用 set_tags 方法。

可以通过 get_tagsget_tag 检查当前标签值。

参数:
**tag_dictdict

标签名称 : 标签值 对的字典。

返回:
自身

对 self 的引用。

transform(X, y=None)[source]#

转换 X 并返回转换后的版本。

所需状态

需要状态为“已拟合”。

访问 self 中的内容

  • 以“_”结尾的拟合模型属性。

  • self.is_fitted,必须为 True

参数:
Xsktime 兼容数据容器格式的时间序列

要转换的数据。

sktime 中的独立数据格式称为 mtype 规范,每个 mtype 实现一个抽象的 scitype

  • Series scitype = 单个时间序列。pd.DataFramepd.Seriesnp.ndarray (1D 或 2D)

  • Panel scitype = 时间序列集合。pd.DataFrame 带有 2 级行 MultiIndex (实例, 时间)3D np.ndarray (实例, 变量, 时间)list 类型的 Series pd.DataFrame

  • Hierarchical scitype = 时间序列的层级集合。pd.DataFrame 带有 3 级或更多行 MultiIndex (层级_1, ..., 层级_n, 时间)

有关数据格式的更多详细信息,请参阅关于 mtype 的术语表。有关用法,请参阅转换器教程 examples/03_transformers.ipynb

y:可选,sktime 兼容数据格式的数据,默认值=None

附加数据,例如用于转换的标签。某些转换器需要此项,详情请参见类文档字符串。

返回:
X 的转换版本
类型取决于 X 的类型和 scitype:transform-output 标签

转换

X

-输出

返回类型

Series

Primitives

pd.DataFrame (1行)

Panel

Primitives

pd.DataFrame

Series

Series

Series

Panel

Series

Panel

Series

Panel

Panel

返回中的实例对应于 X 中的实例
表中未列出的组合目前不支持
具体说明,带示例
  • 如果 XSeries (例如,pd.DataFrame)

并且 transform-outputSeries,则返回的是一个相同 mtype 的单个 Series。示例:对单个序列进行去趋势

  • 如果 XPanel (例如,pd-multiindex) 并且 transform-output

Series,则返回的是一个 Panel,其实例数量与 X 相同(转换器应用于每个输入的 Series 实例)。示例:面板中的所有序列都被单独去趋势

  • 如果 XSeriesPanel 并且 transform-output

Primitives,则返回的是一个 pd.DataFrame,其行数与 X 中的实例数相同。示例:返回值的第 i 行包含第 i 个序列的均值和方差

  • 如果 XSeries 并且 transform-outputPanel

则返回的是一个 pd-multiindex 类型的 Panel 对象。示例:输出的第 i 个实例是运行在 X 上的第 i 个窗口

update(X, y=None, update_params=True)[source]#

使用 X 更新转换器,y 可选。

所需状态

需要状态为“已拟合”。

访问 self 中的内容

  • 以“_”结尾的拟合模型属性。

  • self.is_fitted,必须为 True

写入自身

  • 以“_”结尾的拟合模型属性。

  • 如果 remember_data 标签为 True,则通过 update_dataself._X 更新为 X 中的值。

参数:
Xsktime 兼容数据容器格式的时间序列

用于更新转换的数据

sktime 中的独立数据格式称为 mtype 规范,每个 mtype 实现一个抽象的 scitype

  • Series scitype = 单个时间序列。pd.DataFramepd.Seriesnp.ndarray (1D 或 2D)

  • Panel scitype = 时间序列集合。pd.DataFrame 带有 2 级行 MultiIndex (实例, 时间)3D np.ndarray (实例, 变量, 时间)list 类型的 Series pd.DataFrame

  • Hierarchical scitype = 时间序列的层级集合。pd.DataFrame 带有 3 级或更多行 MultiIndex (层级_1, ..., 层级_n, 时间)

有关数据格式的更多详细信息,请参阅关于 mtype 的术语表。有关用法,请参阅转换器教程 examples/03_transformers.ipynb

y:可选,sktime 兼容数据格式的数据,默认值=None

附加数据,例如用于转换的标签。某些转换器需要此项,详情请参见类文档字符串。

返回:
self:评估器的一个已拟合实例