SignatureKernel#
- class SignatureKernel(kernel=None, level=2, degree=1, theta=1, normalize=False, lowrank=False, rankbound=inf)[source]#
时间序列签名核,包括高阶和低秩变体。
实现 Kiraly 等人的签名核,参见 [1] 和 [2],包括其中描述的高阶和低秩近似变体。
- 参数:
- kernelsktime 对对(表格)转换器,可调用,或 None
签名序列核中使用的内部(表格)核 如果可调用:函数 (2D np.ndarray x 2D np.ndarray) -> 2D np.ndarray 对对核函数,矩阵大小 (n, d) x (m, d) -> (n x m) 可选,默认 = None = 尺度参数为 1 的欧几里得(线性)核
- levelint,可选,默认 = 2
一个大于等于 1 的整数,表示序列核的截断级别
- degreeint,可选,默认 = 1
一个大于等于 1 的整数,表示序列核的近似阶数 仅在 lowrank = False 时可设置,否则忽略(始终 = 1)
- thetafloat,可选,默认=1.0
一个正的尺度因子,用于各级别,第 i 级按 theta^i 进行缩放
- normalizebool,可选,默认 = False
输出核矩阵是否归一化 如果为 True,和与累积和除以 prod(K.shape)
- lowrankbool,可选,默认 = False
计算核时是否使用低秩近似
- rankboundint,可选,默认 = infinity
级别矩阵秩的硬阈值 仅在 lowrank = True 时使用
- 属性:
is_fitted
fit
方法是否已被调用。
参考文献
[1]F. Kiraly, H. Oberhauser. 2016. “Kernels for sequentially ordered data.”, arXiv: 1601.08169.
[2]F. Kiraly, H. Oberhauser. 2019. “Kernels for sequentially ordered data.”, Journal of Machine Learning Research.
方法
__call__
(X[, X2])计算距离/核矩阵,调用简写。
check_is_fitted
([method_name])检查估计器是否已拟合。
clone
()获取具有相同超参数和配置的对象的克隆。
clone_tags
(estimator[, tag_names])将另一个对象的标签克隆为动态覆盖。
create_test_instance
([parameter_set])使用第一个测试参数集构造类的实例。
create_test_instances_and_names
([parameter_set])创建所有测试实例列表及其名称列表。
fit
([X, X2])用于接口兼容性的拟合方法(内部无逻辑)。
get_class_tag
(tag_name[, tag_value_default])从类中获取类标签值,并从父类继承标签级别。
从类中获取类标签,并从父类继承标签级别。
获取自身的配置标志。
get_fitted_params
([deep])获取拟合参数。
获取对象的默认参数值。
get_param_names
([sort])获取对象的参数名称。
get_params
([deep])获取此对象的参数值字典。
get_tag
(tag_name[, tag_value_default, ...])从实例中获取标签值,具有标签级别继承和覆盖。
get_tags
()从实例中获取标签,具有标签级别继承和覆盖。
get_test_params
([parameter_set])返回估计器的测试参数设置。
检查对象是否由其他 BaseObjects 组成。
load_from_path
(serial)从文件位置加载对象。
load_from_serial
(serial)从序列化内存容器加载对象。
reset
()将对象重置为干净的初始化后状态。
save
([path, serialization_format])将序列化自身保存到类字节对象或到 (.zip) 文件。
set_config
(**config_dict)将配置标志设置为给定值。
set_params
(**params)设置此对象的参数。
set_random_state
([random_state, deep, ...])为自身设置 random_state 伪随机种子参数。
set_tags
(**tag_dict)将实例级别标签覆盖设置为给定值。
transform
(X[, X2])计算距离/核矩阵。
计算距离/核矩阵的对角线。
- check_is_fitted(method_name=None)[source]#
检查估计器是否已拟合。
检查
_is_fitted
属性是否存在且为True
。在调用对象的fit
方法时,is_fitted
属性应设置为True
。如果不是,则引发
NotFittedError
。- 参数:
- method_namestr,可选
调用此函数的方法的名称。如果提供,错误消息将包含此信息。
- 引发:
- NotFittedError
如果估计器尚未拟合。
- clone()[source]#
获取具有相同超参数和配置的对象的克隆。
克隆是一个不同的对象,没有共享引用,处于初始化后状态。此函数等同于返回
sklearn.clone
的self
。等同于构造一个新的
type(self)
实例,使用self
的参数,即type(self)(**self.get_params(deep=False))
。如果在
self
上设置了配置,克隆也将具有与原始对象相同的配置,等同于调用cloned_self.set_config(**self.get_config())
。在值上也等同于调用
self.reset
,区别在于clone
返回一个新对象,而不是像reset
那样修改self
。- 引发:
- 如果克隆不符合规范,由于
__init__
错误,则引发 RuntimeError。
- 如果克隆不符合规范,由于
- clone_tags(estimator, tag_names=None)[source]#
将另一个对象的标签克隆为动态覆盖。
每个与
scikit-base
兼容的对象都有一个标签字典。标签可用于存储关于对象的元数据,或控制对象的行为。标签是特定于实例
self
的键值对,它们是对象构造后不会改变的静态标志。clone_tags
从另一个对象estimator
设置动态标签覆盖。clone_tags
方法只能在对象的__init__
方法中调用,在构造期间,或通过__init__
直接在构造之后调用。动态标签被设置为
estimator
中标签的值,名称由tag_names
指定。tag_names
的默认值将estimator
中的所有标签写入self
。当前标签值可以通过
get_tags
或get_tag
查看。- 参数:
- estimator:class:BaseObject 或派生类的实例
- tag_namesstr 或 str 列表,默认 = None
要克隆的标签名称。默认值 (
None
) 克隆estimator
中的所有标签。
- 返回:
- self
对
self
的引用。
- classmethod create_test_instance(parameter_set='default')[source]#
使用第一个测试参数集构造类的实例。
- 参数:
- parameter_setstr,默认值="default"
要返回的测试参数集的名称,用于测试。如果未为某个值定义特殊参数,将返回 “default” 集。
- 返回:
- instance具有默认参数的类实例
- classmethod create_test_instances_and_names(parameter_set='default')[source]#
创建所有测试实例列表及其名称列表。
- 参数:
- parameter_setstr,默认值="default"
要返回的测试参数集的名称,用于测试。如果未为某个值定义特殊参数,将返回 “default” 集。
- 返回:
- objscls 实例列表
第 i 个实例是
cls(**cls.get_test_params()[i])
- names字符串列表,长度与 objs 相同
第 i 个元素是测试中第 i 个 obj 实例的名称。如果实例不止一个,命名约定为
{cls.__name__}-{i}
,否则为{cls.__name__}
- classmethod get_class_tag(tag_name, tag_value_default=None)[source]#
从类中获取类标签值,并从父类继承标签级别。
每个
scikit-base
兼容对象都有一个标签字典,用于存储对象的元数据。get_class_tag
方法是一个类方法,仅考虑类级别的标签值和覆盖来检索标签的值。它从对象中返回名称为
tag_name
的标签的值,按以下降序优先级考虑标签覆盖在类的
_tags
属性中设置的标签。在父类的
_tags
属性中设置的标签,
按继承顺序。
不考虑通过
set_tags
或clone_tags
在实例上设置的动态标签覆盖。要检索包含潜在实例覆盖的标签值,请改用
get_tag
方法。- 参数:
- tag_namestr
标签值的名称。
- tag_value_default任意类型
如果未找到标签,则使用的默认/回退值。
- 返回:
- tag_value
self
中tag_name
标签的值。如果未找到,则返回tag_value_default
。
- classmethod get_class_tags()[source]#
从类中获取类标签,并从父类继承标签级别。
每个与
scikit-base
兼容的对象都有一个标签字典。标签可用于存储关于对象的元数据,或控制对象的行为。标签是特定于实例
self
的键值对,它们是对象构造后不会改变的静态标志。get_class_tags
方法是一个类方法,仅考虑类级别的标签值和覆盖来检索标签的值。它返回一个字典,其键是类或其任何父类中设置的
_tags
属性的任何键。值是相应的标签值,覆盖按以下降序优先级排序
在类的
_tags
属性中设置的标签。在父类的
_tags
属性中设置的标签,
按继承顺序。
实例可以根据超参数覆盖这些标签。
要检索包含潜在实例覆盖的标签,请改用
get_tags
方法。不考虑通过
set_tags
或clone_tags
在实例上设置的动态标签覆盖。对于包含动态标签的覆盖,请使用
get_tags
。- collected_tagsdict
标签名称 : 标签值 对的字典。通过嵌套继承从
_tags
类属性收集。不受通过set_tags
或clone_tags
设置的动态标签覆盖。
- get_config()[source]#
获取自身的配置标志。
配置是
self
的键值对,通常用作控制行为的临时标志。get_config
返回动态配置,这些配置会覆盖默认配置。默认配置在类或其父类的类属性
_config
中设置,并被通过set_config
设置的动态配置覆盖。配置在
clone
或reset
调用下保留。- 返回:
- config_dictdict
配置名称 : 配置值 对的字典。通过嵌套继承从 _config 类属性收集,然后是来自 _config_dynamic 对象属性的任何覆盖和新标签。
- get_fitted_params(deep=True)[source]#
获取拟合参数。
- 所需状态
要求状态为“已拟合”。
- 参数:
- deepbool,默认为 True
是否返回组件的已拟合参数。
如果为 True,将返回此对象的参数名称 : 值字典,包括可拟合组件的已拟合参数(= BaseEstimator 类型参数)。
如果为 False,将返回此对象的参数名称 : 值字典,但不包括组件的已拟合参数。
- 返回:
- fitted_params带有字符串键的字典
已拟合参数字典,paramname : paramvalue 键值对包括
始终:此对象的所有已拟合参数,通过
get_param_names
获取的值是此对象该键的已拟合参数值如果
deep=True
,也包含组件参数的键/值对,组件的参数通过[componentname]__[paramname]
索引componentname
的所有参数都以paramname
及其值的形式出现如果
deep=True
,也包含任意级别的组件递归,例如[componentname]__[componentcomponentname]__[paramname]
等
- classmethod get_param_defaults()[source]#
获取对象的参数默认值。
- 返回:
- default_dict: dict[str, Any]
键是
cls
的所有在__init__
中定义了默认值的参数。值是默认值,如__init__
中所定义。
- classmethod get_param_names(sort=True)[source]#
获取对象的参数名称。
- 参数:
- sortbool,默认为 True
是否按字母顺序 (True) 返回参数名称,或按它们在类
__init__
中出现的顺序 (False) 返回。
- 返回:
- param_names: list[str]
cls
的参数名称列表。如果sort=False
,顺序与它们在类__init__
中出现的顺序相同。如果sort=True
,则按字母排序。
- get_params(deep=True)[source]#
获取此对象的参数值字典。
- 参数:
- deepbool,默认为 True
是否返回组件的参数。
如果为
True
,将返回此对象的参数名称 : 值dict
,包括组件的参数(=BaseObject
类型参数)。如果为
False
,将返回此对象的参数名称 : 值dict
,但不包括组件的参数。
- 返回:
- params带有字符串键的字典
参数字典,paramname : paramvalue 键值对包括
始终:此对象的所有参数,通过
get_param_names
获取的值是此对象该键的参数值,值始终与构造时传递的值相同如果
deep=True
,也包含组件参数的键/值对,组件的参数通过[componentname]__[paramname]
索引componentname
的所有参数都以paramname
及其值的形式出现如果
deep=True
,也包含任意级别的组件递归,例如[componentname]__[componentcomponentname]__[paramname]
等
- get_tag(tag_name, tag_value_default=None, raise_error=True)[source]#
从实例中获取标签值,具有标签级别继承和覆盖。
每个与
scikit-base
兼容的对象都有一个标签字典。标签可用于存储关于对象的元数据,或控制对象的行为。标签是特定于实例
self
的键值对,它们是对象构造后不会改变的静态标志。get_tag
方法从实例中检索名称为tag_name
的单个标签的值,按以下降序优先级考虑标签覆盖通过实例上的
set_tags
或clone_tags
设置的标签,
在实例构造时。
在类的
_tags
属性中设置的标签。在父类的
_tags
属性中设置的标签,
按继承顺序。
- 参数:
- tag_namestr
要检索的标签的名称
- tag_value_default任意类型,可选;默认为 None
如果未找到标签,则使用的默认/回退值
- raise_errorbool
未找到标签时是否引发
ValueError
- 返回:
- tag_valueAny
self
中tag_name
标签的值。如果未找到,则在raise_error
为 True 时引发错误,否则返回tag_value_default
。
- 引发:
- ValueError,如果
raise_error
为True
。 如果
tag_name
不在self.get_tags().keys()
中,则会引发ValueError
。
- ValueError,如果
- get_tags()[source]#
从实例中获取标签,具有标签级别继承和覆盖。
每个与
scikit-base
兼容的对象都有一个标签字典。标签可用于存储关于对象的元数据,或控制对象的行为。标签是特定于实例
self
的键值对,它们是对象构造后不会改变的静态标志。get_tags
方法返回一个标签字典,其键是类或其任何父类中设置的_tags
属性的任何键,或通过set_tags
或clone_tags
设置的标签。值是相应的标签值,覆盖按以下降序优先级排序
通过实例上的
set_tags
或clone_tags
设置的标签,
在实例构造时。
在类的
_tags
属性中设置的标签。在父类的
_tags
属性中设置的标签,
按继承顺序。
- 返回:
- collected_tagsdict
标签名称 : 标签值 对的字典。通过嵌套继承从
_tags
类属性收集,然后是来自_tags_dynamic
对象属性的任何覆盖和新标签。
- classmethod get_test_params(parameter_set='default')[source]#
返回估计器的测试参数设置。
- 参数:
- parameter_setstr,默认值="default"
要返回的测试参数集的名称,用于测试。如果某个值没有定义特殊的参数,则将返回
"default"
集。目前距离/核变换器没有保留的值。
- 返回:
- paramsdict 或 list of dict,默认为 {}
用于创建类测试实例的参数。每个字典都是用于构造一个“有趣”测试实例的参数,即
MyClass(**params)
或MyClass(**params[i])
创建一个有效的测试实例。create_test_instance
使用params
中的第一个(或唯一的)字典
- is_composite()[source]#
检查对象是否由其他 BaseObjects 组成。
复合对象是包含其他对象作为参数的对象。在实例上调用,因为这可能因实例而异。
- 返回:
- composite: bool
对象是否有任何参数的值是
BaseObject
的后代实例。
- property is_fitted[source]#
fit
方法是否已被调用。检查对象的
_is_fitted` 属性,该属性在对象构造期间应初始化为 ``False
,并在调用对象的 fit 方法时设置为 True。- 返回:
- bool
估计器是否已 fit。
- classmethod load_from_path(serial)[source]#
从文件位置加载对象。
- 参数:
- serialZipFile(path).open(“object) 的结果
- 返回:
- 反序列化后的 self,结果位于
path
,与cls.save(path)
的输出相同
- 反序列化后的 self,结果位于
- classmethod load_from_serial(serial)[source]#
从序列化内存容器加载对象。
- 参数:
- serial
cls.save(None)
输出的第一个元素
- serial
- 返回:
- 反序列化后的 self,结果为
serial
,与cls.save(None)
的输出相同
- 反序列化后的 self,结果为
- reset()[source]#
将对象重置为干净的初始化后状态。
导致将
self
设置为构造函数调用后立即达到的状态,具有相同的超参数。通过set_config
设置的配置值也保留。一个
reset
调用会删除所有对象属性,除了超参数 =
__init__
的参数写入self
,例如self.paramname
,其中paramname
是__init__
的参数包含双下划线,即字符串“__”的对象属性。例如,名为“__myattr”的属性会被保留。
配置属性,配置会原封不动地保留。也就是说,
reset
前后get_config
的结果是相同的。
类方法和对象方法以及类属性也不受影响。
等同于
clone
,不同之处在于reset
改变self
而不是返回一个新对象。在调用
self.reset()
后,self
在值和状态上等于构造函数调用type(self)(**self.get_params(deep=False))
后获得的对象。- 返回:
- self
重置为干净的初始化后状态,但保留当前超参数值的类实例。
- save(path=None, serialization_format='pickle')[source]#
将序列化自身保存到类字节对象或到 (.zip) 文件。
行为:如果
path
为 None,则返回一个内存中的序列化 self;如果path
是文件位置,则将 self 以 zip 文件形式存储在该位置保存的文件是 zip 文件,包含以下内容:_metadata - 包含 self 的类,即 type(self);_obj - 序列化的 self。此类使用默认的序列化方法 (pickle)。
- 参数:
- pathNone 或文件位置 (str 或 Path)
如果为 None,self 将保存到内存对象中;如果是文件位置,self 将保存到该文件位置。
如果 path="estimator",则会在当前工作目录 (cwd) 创建一个 zip 文件
estimator.zip
。如果 path="/home/stored/estimator",则会在
/home/stored/
存储一个 zip 文件estimator.zip
。- serialization_format: str,默认为 “pickle”
用于序列化的模块。可用选项有“pickle”和“cloudpickle”。请注意,非默认格式可能需要安装其他软依赖项。
- 返回:
- 如果
path
为 None - 内存中的序列化 self - 如果
path
是文件位置 - ZipFile 对象,引用该文件
- 如果
- set_config(**config_dict)[source]#
将配置标志设置为给定值。
- 参数:
- config_dictdict
配置名称 : 配置值 对的字典。有效的配置、值及其含义如下所述
- displaystr,“diagram”(默认)或“text”
jupyter 内核如何显示 self 的实例
“diagram” = html 框图表示
“text” = 字符串打印输出
- print_changed_onlybool,默认为 True
打印 self 时是仅列出与默认值不同的 self 参数 (True),还是列出所有参数名称和值 (False)。不进行嵌套,即仅影响 self 而不影响组件估计器。
- warningsstr,“on”(默认)或“off”
是否发出警告,仅影响 sktime 的警告
“on” = 会发出 sktime 的警告
“off” = 不会发出 sktime 的警告
- backend:parallelstr,可选,默认为“None”
广播/向量化时用于并行化的后端之一:
“None”:顺序执行循环,简单的列表推导
“loky”、“multiprocessing”和“threading”:使用
joblib.Parallel
“joblib”:自定义和第三方
joblib
后端,例如spark
“dask”:使用
dask
,需要在环境中安装dask
包“ray”:使用
ray
,需要在环境中安装ray
包
- backend:parallel:paramsdict,可选,默认为 {} (不传递参数)
作为配置传递给并行化后端的附加参数。有效的键取决于
backend:parallel
的值“None”:没有附加参数,
backend_params
被忽略“loky”、“multiprocessing”和“threading”:默认的
joblib
后端,这里可以传递joblib.Parallel
的任何有效键,例如n_jobs
,除了backend
,它由backend
直接控制。如果未传递n_jobs
,则默认为-1
,其他参数将默认为joblib
的默认值。“joblib”:自定义和第三方
joblib
后端,例如spark
。这里可以传递joblib.Parallel
的任何有效键,例如n_jobs
。backend
在这种情况下必须作为backend_params
的一个键传递。如果未传递n_jobs
,则默认为-1
,其他参数将默认为joblib
的默认值。“dask”:可以传递
dask.compute
的任何有效键,例如scheduler
“ray”:可以传递以下键
“ray_remote_args”:
ray.init
的有效键字典- “shutdown_ray”:bool,默认为 True;False 可阻止
ray
在并行化后 关闭。
- “shutdown_ray”:bool,默认为 True;False 可阻止
“logger_name”:str,默认为“ray”;要使用的日志器名称。
“mute_warnings”:bool,默认为 False;如果为 True,则抑制警告
- 返回:
- self对 self 的引用。
注意
更改对象状态,将 config_dict 中的配置复制到 self._config_dynamic。
- set_params(**params)[source]#
设置此对象的参数。
此方法适用于简单的 skbase 对象以及复合对象。参数键字符串
<component>__<parameter>
可用于复合对象,即包含其他对象的对象,以访问组件<component>
中的<parameter>
。如果引用是明确的,也可以使用不带<component>__
的字符串<parameter>
,例如,没有两个组件参数同名<parameter>
。- 参数:
- **paramsdict
BaseObject 参数,键必须是
<component>__<parameter>
字符串。__
后缀如果对于 get_params 键是唯一的,则可以作为完整字符串的别名。
- 返回:
- self对 self 的引用(参数设置后)
- set_random_state(random_state=None, deep=True, self_policy='copy')[source]#
为自身设置 random_state 伪随机种子参数。
通过
self.get_params
查找名为random_state
的参数,并通过set_params
将它们设置为源自random_state
的整数。这些整数通过sample_dependent_seed
从链式哈希中抽样得到,保证了种子随机生成器的伪随机独立性。根据
self_policy
,应用于self
中的random_state
参数,以及仅当deep=True
时应用于剩余组件对象。注意:即使
self
没有random_state
参数,或者没有任何组件具有random_state
参数,也会调用set_params
。因此,set_random_state
将重置任何scikit-base
对象,即使是没有random_state
参数的对象。- 参数:
- random_stateint、RandomState 实例或 None,默认 None
伪随机数生成器,用于控制随机整数的生成。传入 int 可在多次函数调用中获得可重现的输出。
- deepbool,默认为 True
是否在 skbase 对象值参数(即组件估计器)中设置随机状态。
如果为 False,则仅设置
self
的random_state
参数(如果存在)。如果为 True,也将设置组件对象中的
random_state
参数。
- self_policystr,{'copy', 'keep', 'new'} 之一,默认 'copy'
"copy" :
self.random_state
设置为输入的random_state
"keep" :
self.random_state
保持不变"new" :
self.random_state
设置为一个新的随机状态,
源自输入的
random_state
,通常与其不同
- 返回:
- self指向 self 的引用
- set_tags(**tag_dict)[source]#
将实例级别标签覆盖设置为给定值。
每个
scikit-base
兼容对象都有一个标签字典,用于存储对象的元数据。标签是特定于实例
self
的键值对,它们是静态标志,在对象构建后不会更改。它们可用于元数据检查,或控制对象的行为。set_tags
将动态标签覆盖设置为tag_dict
中指定的值,其中键是标签名称,字典值是要设置的标签值。set_tags
方法应仅在对象构建期间的__init__
方法中调用,或在通过__init__
构建后立即调用。当前标签值可以通过
get_tags
或get_tag
查看。- 参数:
- **tag_dictdict
标签名称:标签值对的字典。
- 返回:
- Self
指向 self 的引用。
- transform(X, X2=None)[source]#
计算距离/核矩阵。
- 行为:返回 X 和 X2(如果未传入,则等于 X)中样本之间的成对距离/核矩阵
X 和 X2 中的样本之间 (如果未传递,则等于 X)
- 参数:
- XSeries 或 Panel,任何支持的 mtype,n 个实例
- 要转换的数据,python 类型如下
Series: pd.Series、pd.DataFrame 或 np.ndarray (1D 或 2D) Panel: 具有 2 级 MultiIndex 的 pd.DataFrame、pd.DataFrame 列表、
嵌套的 pd.DataFrame,或长/宽格式的 pd.DataFrame
- 符合 sktime mtype 格式规范,更多详情请参见
examples/AA_datatypes_and_datasets.ipynb
- X2Series 或 Panel,任何支持的 mtype,m 个实例
可选,默认:X = X2
- 要转换的数据,python 类型如下
Series: pd.Series、pd.DataFrame 或 np.ndarray (1D 或 2D) Panel: 具有 2 级 MultiIndex 的 pd.DataFrame、pd.DataFrame 列表、
嵌套的 pd.DataFrame,或长/宽格式的 pd.DataFrame
- 符合 sktime mtype 格式规范,更多详情请参见
examples/AA_datatypes_and_datasets.ipynb
X 和 X2 无需具有相同的 mtype
- 返回:
- distmat: shape 为 [n, m] 的 np.array
(i,j) 项包含 X[i] 和 X2[j] 之间的距离/核
- transform_diag(X)[source]#
计算距离/核矩阵的对角线。
行为:返回 X 中样本的距离/核矩阵的对角线
- 参数:
- XSeries 或 Panel,任何支持的 mtype,n 个实例
- 要转换的数据,python 类型如下
Series: pd.Series、pd.DataFrame 或 np.ndarray (1D 或 2D) Panel: 具有 2 级 MultiIndex 的 pd.DataFrame、pd.DataFrame 列表、
嵌套的 pd.DataFrame,或长/宽格式的 pd.DataFrame
- 符合 sktime mtype 格式规范,更多详情请参见
examples/AA_datatypes_and_datasets.ipynb
- 返回:
- diag: shape 为 [n] 的 np.array
i 项包含 X[i] 和 X[i] 之间的距离/核