ZeroChangePoints#

class ZeroChangePoints[source]#

不检测任何变化点的虚拟变化点检测器。

可作为基准测试管道或 API 测试的朴素方法。

不检测任何变化点。

属性:
is_fitted

是否已调用 fit

示例

>>> import pandas as pd
>>> from sktime.detection.dummy import ZeroChangePoints
>>> X = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
>>> d = ZeroChangePoints()
>>> Xt = d.fit_transform(X)

方法

change_points_to_segments(y_sparse[, start, end])

将变化点索引系列转换为段。

check_is_fitted([method_name])

检查估计器是否已拟合。

clone()

获取具有相同超参数和配置的对象的克隆。

clone_tags(estimator[, tag_names])

将其他对象的标签克隆为动态覆盖。

create_test_instance([parameter_set])

使用第一个测试参数集构造类的实例。

create_test_instances_and_names([parameter_set])

创建所有测试实例及其名称列表。

dense_to_sparse(y_dense)

将检测器的密集输出转换为稀疏格式。

fit(X[, y])

拟合训练数据。

fit_predict(X[, y])

拟合数据,然后预测。

fit_transform(X[, y])

拟合数据,然后进行变换。

get_class_tag(tag_name[, tag_value_default])

从类中获取类标签值,并从父类继承标签级别。

get_class_tags()

从类中获取类标签,并从父类继承标签级别。

get_config()

获取自身的配置标志。

get_fitted_params([deep])

获取拟合参数。

get_param_defaults()

获取对象的参数默认值。

get_param_names([sort])

获取对象的参数名称。

get_params([deep])

获取此对象的参数值字典。

get_tag(tag_name[, tag_value_default, ...])

从实例获取标签值,具有标签级别的继承和覆盖。

get_tags()

从实例获取标签,具有标签级别的继承和覆盖。

get_test_params([parameter_set])

返回 skbase 对象的测试参数设置。

is_composite()

检查对象是否由其他 BaseObjects 组成。

load_from_path(serial)

从文件位置加载对象。

load_from_serial(serial)

从序列化内存容器加载对象。

predict(X)

在测试/部署数据上创建标签。

predict_points(X)

在测试/部署数据上预测变化点/异常。

predict_scores(X)

返回测试/部署数据上预测标签的分数。

predict_segments(X)

在测试/部署数据上预测段。

reset()

将对象重置为干净的初始化后状态。

save([path, serialization_format])

将序列化的自身保存到类字节对象或 (.zip) 文件中。

segments_to_change_points(y_sparse)

将段转换为变化点。

set_config(**config_dict)

将配置标志设置为给定值。

set_params(**params)

设置此对象的参数。

set_random_state([random_state, deep, ...])

为自身设置 random_state 伪随机种子参数。

set_tags(**tag_dict)

将实例级别的标签覆盖设置为给定值。

sparse_to_dense(y_sparse, index)

将检测器的稀疏输出转换为密集格式。

transform(X)

在测试/部署数据上创建标签。

transform_scores(X)

返回测试/部署数据上预测标签的分数。

update(X[, y])

使用新数据和可选的真实标签更新模型。

update_predict(X[, y])

使用新数据更新模型并为其创建标签。

静态 change_points_to_segments(y_sparse, start=None, end=None)[source]#

将变化点索引系列转换为段。

参数:
y_sparsepd.Series, int类型, 升序排序

一个包含变化点 iloc 索引的 Series。

start可选, 默认为0

第一个区间的起始点。必须在第一个变化点之前,即 < y_sparse[0]。

end可选, 默认为 y_sparse[-1] + 1

最后一个区间的结束点。必须在最后一个变化点之后,即 > y_sparse[-1]。

返回:
pd.Series

一个带有区间索引的 Series,指示区间的开始和结束点。Series 的值是区间的标签。

示例

>>> import pandas as pd
>>> from sktime.detection.base import BaseDetector
>>> change_points = pd.Series([1, 2, 5])
>>> BaseDetector.change_points_to_segments(change_points, 0, 7)
[0, 1)    0
[1, 2)    1
[2, 5)    2
[5, 7)    3
dtype: int64
check_is_fitted(method_name=None)[source]#

检查估计器是否已拟合。

检查 _is_fitted 属性是否存在且为 Trueis_fitted 属性应在调用对象的 fit 方法时设置为 True

如果不是,则引发 NotFittedError

参数:
method_namestr, 可选

调用此函数的方法的名称。如果提供,错误消息将包含此信息。

引发:
NotFittedError

如果估计器尚未拟合。

clone()[source]#

获取具有相同超参数和配置的对象的克隆。

克隆是一个不同的对象,没有共享引用,处于初始化后状态。此函数等同于返回 selfsklearn.clone

等同于使用 self 的参数构造一个新的 type(self) 实例,即 type(self)(**self.get_params(deep=False))

如果在 self 上设置了配置,克隆也将具有与原始对象相同的配置,等同于调用 cloned_self.set_config(**self.get_config())

在值上也等同于调用 self.reset,但 clone 返回一个新对象,而不是像 reset 那样修改 self

引发:
如果克隆由于错误的 __init__ 而不符合规范,则引发 RuntimeError。
clone_tags(estimator, tag_names=None)[source]#

将其他对象的标签克隆为动态覆盖。

每个兼容 scikit-base 的对象都有一个标签字典。标签可用于存储对象的元数据,或控制对象的行为。

标签是特定于实例 self 的键值对,它们是静态标志,在对象构造后不会改变。

clone_tags 从另一个对象 estimator 设置动态标签覆盖。

clone_tags 方法只能在对象的 __init__ 方法中调用,即在构造期间或通过 __init__ 直接构造后调用。

动态标签被设置为 estimator 中标签的值,名称在 tag_names 中指定。

tag_names 的默认值将 estimator 中的所有标签写入 self

当前标签值可以通过 get_tagsget_tag 查看。

参数:
estimator:class:BaseObject 或派生类的实例
tag_namesstr 或 list of str, 默认为 None

要克隆的标签名称。默认值 (None) 克隆 estimator 中的所有标签。

返回:
self

self 的引用。

类方法 create_test_instance(parameter_set='default')[source]#

使用第一个测试参数集构造类的实例。

参数:
parameter_setstr, 默认为“default”

要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,则将返回“default”集。

返回:
instance具有默认参数的类实例
类方法 create_test_instances_and_names(parameter_set='default')[source]#

创建所有测试实例及其名称列表。

参数:
parameter_setstr, 默认为“default”

要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,则将返回“default”集。

返回:
objscls 实例的列表

第 i 个实例为 cls(**cls.get_test_params()[i])

namesstr 列表, 与 objs 长度相同

第 i 个元素是测试中第 i 个 obj 实例的名称。如果实例多于一个,命名约定为 {cls.__name__}-{i},否则为 {cls.__name__}

静态 dense_to_sparse(y_dense)[source]#

将检测器的密集输出转换为稀疏格式。

参数:
y_densepd.Series
  • 如果 y_sparse 只包含 1 和 0,则 1 代表变化点或异常。

  • 如果 y_sparse 只包含大于 0 的整数,则它是一个区间数组。

返回:
pd.Series
  • 如果 y_sparse 是一个变化点/异常的 Series,将返回一个包含变化点/异常索引的 pandas Series

  • 如果 y_sparse 是一个区间的 Series,将返回一个带有区间数据类型索引的 Series。Series 的值将是区间的标签。

fit(X, y=None)[source]#

拟合训练数据。

参数:
Xpd.DataFrame, pd.Series 或 np.ndarray

用于拟合模型(时间序列)的训练数据。

y带有 RangeIndex 的 pd.DataFrame, 可选。

用于训练的已知事件,位于 X 中,如果检测器是监督式的。

y 的每一行都是一个已知事件。可以包含以下列

  • "ilocs" - 始终存在。值通过 iloc 引用 X 的索引或 X 的索引范围来编码事件发生的地点/时间,如下所述。

  • "label" - 如果任务(通过标签)是带有标签的监督式或半监督式分段,或区间聚类。

"ilocs" 列和 "labels" 列中条目的含义描述了给定行中的事件,如下所示

  • 如果 task"anomaly_detection""change_point_detection""ilocs" 包含事件发生的 iloc 索引。

  • 如果 task"segmentation""ilocs" 包含基于 iloc 的区间的左闭合区间,解释为事件发生的索引范围。

"labels" 列中的标签(如果存在)指示事件的类型。

返回:
self

对 self 的引用。

注意

创建已拟合模型,该模型更新以“_”结尾的属性。将 _is_fitted 标志设置为 True。

fit_predict(X, y=None)[source]#

拟合数据,然后预测。

使用给定的检测参数将模型拟合到 X 和 Y,并返回模型生成的检测标签。

参数:
Xpd.DataFrame, pd.Series 或 np.ndarray

要转换的数据

y带有 RangeIndex 的 pd.DataFrame, 可选。

用于训练的已知事件,位于 X 中,如果检测器是监督式的。

y 的每一行都是一个已知事件。可以包含以下列

  • "ilocs" - 始终存在。值通过 iloc 引用 X 的索引或 X 的索引范围来编码事件发生的地点/时间,如下所述。

  • "label" - 如果任务(通过标签)是带有标签的监督式或半监督式分段,或区间聚类。

"ilocs" 列和 "labels" 列中条目的含义描述了给定行中的事件,如下所示

  • 如果 task"anomaly_detection""change_point_detection""ilocs" 包含事件发生的 iloc 索引。

  • 如果 task"segmentation""ilocs" 包含基于 iloc 的区间的左闭合区间,解释为事件发生的索引范围。

"labels" 列中的标签(如果存在)指示事件的类型。

返回:
y带有 RangeIndex 的 pd.DataFrame

检测到或预测到的事件。

y 的每一行都是一个检测到或预测到的事件。可以包含以下列

  • "ilocs" - 始终存在。值通过 iloc 引用 X 的索引或 X 的索引范围来编码事件发生的地点/时间,如下所述。

  • "label" - 如果任务(通过标签)是带有标签的监督式或半监督式分段,或区间聚类。

"ilocs" 列和 "labels" 列中条目的含义描述了给定行中的事件,如下所示

  • 如果 task"anomaly_detection""change_point_detection""ilocs" 包含事件发生的 iloc 索引。

  • 如果 task"segmentation""ilocs" 包含基于 iloc 的区间的左闭合区间,解释为事件发生的索引范围。

"labels" 列中的标签(如果存在)指示事件的类型。

fit_transform(X, y=None)[source]#

拟合数据,然后进行变换。

使用给定的检测参数将模型拟合到 X 和 Y,并返回模型生成的检测标签。

参数:
Xpd.DataFrame, pd.Series 或 np.ndarray

要转换的数据

ypd.Series 或 np.ndarray, 可选 (默认为 None)

要预测数据的目标值。

返回:
y带有与 X 相同索引的 pd.DataFrame

序列 X 的标签。

  • 如果 task"anomaly_detection",值是整数标签。值为 0 表示 X 在同一时间索引处没有异常。其他值表示异常。大多数检测器将返回 0 或 1,但有些如果可以检测不同类型的异常,可能会返回更多值。表示 X 在同一索引处是否为异常,0 表示否,1 表示是。

  • 如果 task"changepoint_detection",值是整数标签,指示变化点之间的区间标签。可能的标签是起始于 0 的整数。

  • 如果 task 是“segmentation”,值是区间的整数标签。可能的标签是起始于 0 的整数。

类方法 get_class_tag(tag_name, tag_value_default=None)[source]#

从类中获取类标签值,并从父类继承标签级别。

每个兼容 scikit-base 的对象都有一个标签字典,用于存储对象的元数据。

get_class_tag 方法是一个类方法,它仅考虑类级别的标签值和覆盖来检索标签的值。

它返回对象中名称为 tag_name 的标签值,考虑标签覆盖,按以下优先级降序排列

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按继承顺序。

不考虑通过 set_tagsclone_tags 在实例上设置的动态标签覆盖,这些是在实例上定义的。

要检索带有潜在实例覆盖的标签值,请改用 get_tag 方法。

参数:
tag_namestr

标签值的名称。

tag_value_default任意类型

如果未找到标签,则使用默认/备用值。

返回:
tag_value

selftag_name 标签的值。如果未找到,则返回 tag_value_default

类方法 get_class_tags()[source]#

从类中获取类标签,并从父类继承标签级别。

每个兼容 scikit-base 的对象都有一个标签字典。标签可用于存储对象的元数据,或控制对象的行为。

标签是特定于实例 self 的键值对,它们是静态标志,在对象构造后不会改变。

get_class_tags 方法是一个类方法,它仅考虑类级别的标签值和覆盖来检索标签的值。

它返回一个字典,其键是类或其任何父类中设置的 _tags 属性的任何键。

值是相应的标签值,按以下优先级降序排列进行覆盖

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按继承顺序。

实例可以根据超参数覆盖这些标签。

要检索带有潜在实例覆盖的标签,请改用 get_tags 方法。

不考虑通过 set_tagsclone_tags 在实例上设置的动态标签覆盖,这些是在实例上定义的。

对于包含来自动态标签的覆盖,请使用 get_tags

collected_tagsdict

标签名称 : 标签值对的字典。通过嵌套继承从 _tags 类属性收集。不受通过 set_tagsclone_tags 设置的动态标签的覆盖。

get_config()[source]#

获取自身的配置标志。

配置是 self 的键值对,通常用作控制行为的瞬时标志。

get_config 返回动态配置,这些配置覆盖默认配置。

默认配置在类或其父类的类属性 _config 中设置,并被通过 set_config 设置的动态配置覆盖。

配置在 clonereset 调用下保留。

返回:
config_dictdict

配置名称 : 配置值对的字典。通过嵌套继承从 _config 类属性收集,然后从 _onfig_dynamic 对象属性获取任何覆盖和新标签。

get_fitted_params(deep=True)[source]#

获取拟合参数。

所需状态

要求状态为“fitted”。

参数:
deepbool, 默认为 True

是否返回组件的拟合参数。

  • 如果为 True,将返回此对象的参数名称 : 值字典,包括可拟合组件(= BaseEstimator 类型参数)的拟合参数。

  • 如果为 False,将返回此对象的参数名称 : 值字典,但不包括组件的拟合参数。

返回:
fitted_params带有 str 类型键的 dict

拟合参数的字典,paramname : paramvalue 键值对包括

  • 始终:此对象的所有拟合参数,如通过 get_param_names 获取的值是此对象该键的拟合参数值

  • 如果 deep=True,还包含组件参数的键/值对,组件的参数索引为 [componentname]__[paramname]componentname 的所有参数显示为 paramname 及其值

  • 如果 deep=True,还包含任意级别的组件递归,例如 [componentname]__[componentcomponentname]__[paramname]

类方法 get_param_defaults()[source]#

获取对象的参数默认值。

返回:
default_dict: dict[str, Any]

键是 cls 中所有在 __init__ 中定义了默认值的参数。值是默认值,如 __init__ 中定义的。

类方法 get_param_names(sort=True)[source]#

获取对象的参数名称。

参数:
sortbool, 默认为 True

是按字母顺序返回参数名称 (True),还是按它们在类 __init__ 中出现的顺序返回 (False)。

返回:
param_names: list[str]

cls 的参数名称列表。如果 sort=False,则按它们在类 __init__ 中出现的相同顺序排列。如果 sort=True,则按字母顺序排列。

get_params(deep=True)[source]#

获取此对象的参数值字典。

参数:
deepbool, 默认为 True

是否返回组件的参数。

  • 如果为 True,将返回此对象的参数名称 : 值字典,包括组件(= BaseObject 类型参数)的参数。

  • 如果为 False,将返回此对象的参数名称 : 值字典,但不包括组件的参数。

返回:
params带有 str 类型键的 dict

参数字典,paramname : paramvalue 键值对包括

  • 始终:此对象的所有参数,如通过 get_param_names 获取的值是此对象该键的参数值,这些值始终与构造时传递的值相同

  • 如果 deep=True,还包含组件参数的键/值对,组件的参数索引为 [componentname]__[paramname]componentname 的所有参数显示为 paramname 及其值

  • 如果 deep=True,还包含任意级别的组件递归,例如 [componentname]__[componentcomponentname]__[paramname]

get_tag(tag_name, tag_value_default=None, raise_error=True)[source]#

从实例获取标签值,具有标签级别的继承和覆盖。

每个兼容 scikit-base 的对象都有一个标签字典。标签可用于存储对象的元数据,或控制对象的行为。

标签是特定于实例 self 的键值对,它们是静态标志,在对象构造后不会改变。

get_tag 方法从实例中检索名称为 tag_name 的单个标签的值,考虑标签覆盖,按以下优先级降序排列

  1. 通过 set_tagsclone_tags 在实例上设置的标签,

在实例构造时。

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按继承顺序。

参数:
tag_namestr

要检索的标签名称

tag_value_default任意类型, 可选; 默认为 None

如果未找到标签,则使用默认/备用值

raise_errorbool

当未找到标签时是否引发 ValueError

返回:
tag_value任意类型

selftag_name 标签的值。如果未找到,则在 raise_error 为 True 时引发错误,否则返回 tag_value_default

引发:
ValueError, 如果 raise_errorTrue

如果 tag_name 不在 self.get_tags().keys() 中,则引发 ValueError

get_tags()[source]#

从实例获取标签,具有标签级别的继承和覆盖。

每个兼容 scikit-base 的对象都有一个标签字典。标签可用于存储对象的元数据,或控制对象的行为。

标签是特定于实例 self 的键值对,它们是静态标志,在对象构造后不会改变。

get_tags 方法返回一个标签字典,其键是类或其任何父类中设置的 _tags 属性的任何键,或通过 set_tagsclone_tags 设置的标签。

值是相应的标签值,按以下优先级降序排列进行覆盖

  1. 通过 set_tagsclone_tags 在实例上设置的标签,

在实例构造时。

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按继承顺序。

返回:
collected_tagsdict

标签名称 : 标签值对的字典。通过嵌套继承从 _tags 类属性收集,然后从 _tags_dynamic 对象属性获取任何覆盖和新标签。

类方法 get_test_params(parameter_set='default')[source]#

返回 skbase 对象的测试参数设置。

get_test_params 是用于存储测试目的参数设置的统一接口点。此函数也用于 create_test_instancecreate_test_instances_and_names 来构造测试实例。

get_test_params 应该返回一个单独的 dict,或一个 dictlist

每个 dict 都是一个用于测试的参数配置,可用于构造一个“有趣的”测试实例。对于 get_test_params 返回中的所有字典 params,调用 cls(**params) 都应该是有效的。

get_test_params 不需要返回固定的字典列表,它也可以返回动态或随机的参数设置。

参数:
parameter_setstr, 默认为“default”

要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,则将返回“default”集。

返回:
paramsdict 或 list of dict, 默认为 {}

用于创建类的测试实例的参数。每个 dict 都是用于构造“有趣的”测试实例的参数,即 MyClass(**params)MyClass(**params[i]) 创建一个有效的测试实例。create_test_instance 使用 params 中的第一个(或唯一一个)字典

is_composite()[source]#

检查对象是否由其他 BaseObjects 组成。

复合对象是一个包含其他对象作为参数的对象。在实例上调用,因为这可能因实例而异。

返回:
composite: bool

对象是否具有任何参数,其值为 BaseObject 的派生实例。

属性 is_fitted[source]#

是否已调用 fit

检查对象的 _is_fitted` 属性,该属性在对象构造期间应初始化为 ``False,并在调用对象的 fit 方法时设置为 True。

返回:
bool

估计器是否已 fit

类方法 load_from_path(serial)[source]#

从文件位置加载对象。

参数:
serialZipFile(path).open(“object)” 的结果
返回:
cls.save(path) 的结果,即在 path 处输出的反序列化的 self
类方法 load_from_serial(serial)[source]#

从序列化内存容器加载对象。

参数:
serialcls.save(None) 输出的第 1 个元素
返回:
cls.save(None) 的结果,即输出为 serial 的反序列化的 self
predict(X)[source]#

在测试/部署数据上创建标签。

此方法返回一个特定于检测任务的类似列表的类型,例如,分段任务返回区间,异常检测任务返回异常。

编码方式因任务和 learning_type(标签)而异,详见下文。

对于跨任务类型一致的返回值,请参阅 predict_pointspredict_segments

参数:
Xpd.DataFrame, pd.Series 或 np.ndarray

将要分配标签或分数的时间序列检测对象。

返回:
y带有 RangeIndex 的 pd.DataFrame

检测到或预测到的事件。

y 的每一行都是一个检测到或预测到的事件。可以包含以下列

  • "ilocs" - 始终存在。值通过 iloc 引用 X 的索引或 X 的索引范围来编码事件发生的地点/时间,如下所述。

  • "label" - 如果任务(通过标签)是带有标签的监督式或半监督式分段,或区间聚类。

"ilocs" 列和 "labels" 列中条目的含义描述了给定行中的事件,如下所示

  • 如果 task"anomaly_detection""change_point_detection""ilocs" 包含事件发生的 iloc 索引。

  • 如果 task"segmentation""ilocs" 包含基于 iloc 的区间的左闭合区间,解释为事件发生的索引范围。

"labels" 列中的标签(如果存在)指示事件的类型。

predict_points(X)[source]#

在测试/部署数据上预测变化点/异常。

predict 的主要区别在于,此方法总是返回一个包含感兴趣点的 pd.DataFrame,即使任务不是异常或变化点检测。

参数:
Xpd.DataFrame

将要分配标签或分数的时间序列检测对象。

返回:
y带有 RangeIndex 的 pd.DataFrame

具有以下列的 pd.DataFrame

  • "ilocs" - 始终存在。值是整数,是 X 的索引的 iloc 引用,表示感兴趣点。

  • "labels" - 如果任务(通过标签)是监督式或半监督式分段,或异常聚类。

"ilocs" 列和 "labels" 列中区间的含义如下

  • 如果 task"anomaly_detection""change_point_detection",则值是变化点/异常的整数索引。

  • 如果 task"segmentation",则值是连续的区间边界。

"labels" 是感兴趣点的潜在标签。

predict_scores(X)[source]#

返回测试/部署数据上预测标签的分数。

参数:
Xpd.DataFrame, pd.Series 或 np.ndarray

要标记的数据(时间序列)。

返回:
scores带有与 predict 返回值相同索引的 pd.DataFrame

序列 X 的预测分数。

predict_segments(X)[source]#

在测试/部署数据上预测段。

predict 的主要区别在于,此方法总是返回一个包含感兴趣区间的 pd.DataFrame,即使任务不是分段。

参数:
Xpd.DataFrame

将要分配标签或分数的时间序列检测对象。

返回:
y带有 RangeIndex 的 pd.DataFrame

具有以下列的 pd.DataFrame

  • "ilocs" - 始终存在。值是左闭合区间,其左/右值是 X 的索引的 iloc 引用,表示区间。

  • "labels" - 如果任务(通过标签)是监督式或半监督式分段,或区间聚类。

"ilocs" 列和 "labels" 列中区间的含义如下

  • 如果 task"anomaly_detection""change_point_detection",则区间是变化点/异常之间的区间,潜在标签是起始于 0 的连续整数。

  • 如果 task"segmentation",则值是分段标签。

reset()[source]#

将对象重置为干净的初始化后状态。

结果是将 self 设置为构造函数调用后直接所处的状态,并保留相同的超参数。通过 set_config 设置的配置值也得到保留。

reset 调用会删除任何对象属性,除了

  • 超参数 = 写入 self__init__ 参数,例如 self.paramname,其中 paramname__init__ 的参数

  • 包含双下划线(即字符串“__”)的对象属性。例如,名为“__myattr”的属性会被保留。

  • 配置属性,配置保持不变。也就是说,reset 前后 get_config 的结果是相同的。

类方法和对象方法,以及类属性也不受影响。

等同于 clone,不同之处在于 reset 修改 self 而不是返回一个新对象。

在调用 self.reset() 后,self 在值和状态上等同于构造函数调用``type(self)(**self.get_params(deep=False))`` 后获得的对象。

返回:
self

类实例重置为干净的初始化后状态,但保留当前的超参数值。

save(path=None, serialization_format='pickle')[source]#

将序列化的自身保存到类字节对象或 (.zip) 文件中。

行为:如果 path 为 None,返回内存中的序列化 self;如果 path 是文件位置,将 self 作为 zip 文件存储在该位置

保存的文件是 zip 文件,包含以下内容:_metadata - 包含 self 的类,即 type(self);_obj - 序列化的 self。此类使用默认序列化(pickle)。

参数:
pathNone 或文件位置 (str 或 Path)

如果为 None,则将 self 保存到内存对象中;如果是文件位置,则将 self 保存到该文件位置。如果

  • path=”estimator”,则会在当前工作目录 (cwd) 创建一个 zip 文件 estimator.zip

  • path=”/home/stored/estimator”,则会在

存储在 /home/stored/ 中。

serialization_format: str, 默认为“pickle”

用于序列化的模块。可用选项有“pickle”和“cloudpickle”。请注意,非默认格式可能需要安装其他软依赖项。

返回:
如果 path 为 None - 内存中的序列化 self
如果 path 是文件位置 - 带有文件引用的 ZipFile
静态 segments_to_change_points(y_sparse)[source]#

将段转换为变化点。

参数:
y_sparsepd.DataFrame

一个区间系列。索引必须是区间数据类型,值应为区间的整数标签。

返回:
pd.Index

一个包含每个区间开始索引的 Index 数组。

示例

>>> import pandas as pd
>>> from sktime.detection.base import BaseDetector
>>> segments =  pd.DataFrame({
        "ilocs": pd.IntervalIndex.from_tuples([(0, 3), (3, 4), (4, 5),
        (5, 6), (6, 7), (7, 8), (8, 10), (10, 11), (11, 12), (12, 20)]),
        "labels": [0, 2, 1, 0, 2, 1, 0, 2, 1, 0]
    })
>>> BaseDetector.segments_to_change_points(segments)
Index([0, 3, 4, 5, 6, 7, 8, 10, 11, 12], dtype='int64')
set_config(**config_dict)[source]#

将配置标志设置为给定值。

参数:
config_dictdict

配置名称 : 配置值对的字典。有效的配置、值及其含义如下所列

displaystr, “diagram”(默认)或“text”

jupyter kernel 如何显示 self 的实例

  • “diagram” = html 框图表示

  • “text” = 字符串打印输出

print_changed_onlybool, 默认为 True

self 的打印是否仅列出与默认值不同的 self 参数 (False),还是列出所有参数名称和值 (False)。不进行嵌套,即仅影响 self 而不影响组件估计器。

warningsstr, “on”(默认)或“off”

是否引发警告,仅影响来自 sktime 的警告

  • “on” = 将引发来自 sktime 的警告

  • “off” = 不会引发来自 sktime 的警告

backend:parallelstr, 可选, 默认为“None”

广播/向量化时用于并行化的后端,以下之一

  • “None”:顺序执行循环,简单的列表推导

  • “loky”、“multiprocessing”和“threading”:使用 joblib.Parallel

  • “joblib”:自定义和第三方 joblib 后端,例如 spark

  • “dask”:使用 dask,需要环境中安装 dask

  • “ray”:使用 ray,需要环境中安装 ray

backend:parallel:paramsdict, 可选, 默认为 {} (不传递参数)

作为配置传递给并行化后端的附加参数。有效键取决于 backend:parallel 的值

  • “None”:没有附加参数,忽略 backend_params

  • “loky”、“multiprocessing”和“threading”:默认的 joblib 后端,此处可以传递 joblib.Parallel 的任何有效键,例如 n_jobs,但 backend 除外,它由 backend 直接控制。如果未传递 n_jobs,则默认为 -1,其他参数将默认为 joblib 的默认值。

  • “joblib”:自定义和第三方 joblib 后端,例如 spark。此处可以传递 joblib.Parallel 的任何有效键,例如 n_jobs,在这种情况下,backend 必须作为 backend_params 的键传递。如果未传递 n_jobs,则默认为 -1,其他参数将默认为 joblib 的默认值。

  • “dask”:可以传递 dask.compute 的任何有效键,例如 scheduler

  • “ray”:可以传递以下键

    • “ray_remote_args”:ray.init 有效键的字典

    • “shutdown_ray”:bool, 默认为 True;False 阻止 ray

      并行化后关闭。

    • “logger_name”:str, 默认为“ray”;要使用的日志记录器名称。

    • “mute_warnings”:bool, 默认为 False;如果为 True,则抑制警告

返回:
self对 self 的引用。

注意

更改对象状态,将 config_dict 中的配置复制到 self._config_dynamic。

set_params(**params)[source]#

设置此对象的参数。

该方法适用于简单的 skbase 对象和复合对象。对于复合对象(即包含其他对象的对象),可以使用参数键字符串 <component>__<parameter> 来访问组件 <component> 中的 <parameter>。如果引用明确(例如,没有两个组件参数同名 <parameter>),也可以使用不带 <component>__ 的字符串 <parameter>

参数:
**paramsdict

BaseObject 参数,键必须是 <component>__<parameter> 字符串。如果 __ 后缀在 get_params 键中唯一,则可以作为完整字符串的别名。

返回:
self对 self 的引用(设置参数后)
set_random_state(random_state=None, deep=True, self_policy='copy')[source]#

为自身设置 random_state 伪随机种子参数。

通过 self.get_params 查找名为 random_state 的参数,并通过 set_params 将它们设置为从 random_state 派生的整数。这些整数通过 sample_dependent_seed 从链式哈希中采样,并保证种子随机生成器的伪随机独立性。

根据 self_policy 应用于 self 中的 random_state 参数,并且仅当 deep=True 时,应用于剩余的组件对象。

注意:即使 self 没有 random_state,或者任何组件都没有 random_state 参数,也会调用 set_params。因此,set_random_state 将重置任何 scikit-base 对象,即使是那些没有 random_state 参数的对象。

参数:
random_stateint, RandomState 实例或 None, 默认为 None

控制随机整数生成的伪随机数生成器。传递 int 以获得跨多个函数调用的可重现输出。

deepbool, 默认为 True

是否在 skbase 对象值参数(即组件估计器)中设置随机状态。

  • 如果为 False,则仅设置 selfrandom_state 参数(如果存在)。

  • 如果为 True,则也会在组件对象中设置 random_state 参数。

self_policystr, 之一 {“copy”, “keep”, “new”}, 默认为“copy”
  • “copy” : 将 self.random_state 设置为输入的 random_state

  • “keep” : self.random_state 保持不变

  • “new” : 将 self.random_state 设置为一个新的随机状态,

从输入的 random_state 派生,通常与输入不同

返回:
self对 self 的引用
set_tags(**tag_dict)[source]#

将实例级别的标签覆盖设置为给定值。

每个兼容 scikit-base 的对象都有一个标签字典,用于存储对象的元数据。

标签是特定于实例 self 的键值对,它们是静态标志,在对象构造后不会更改。它们可用于元数据检查或控制对象的行为。

set_tags 将动态标签覆盖设置为 tag_dict 中指定的值,其中键是标签名称,字典值是要将标签设置到的值。

set_tags 方法只能在对象的 __init__ 方法中调用,即在构造期间或通过 __init__ 直接构造后调用。

当前标签值可以通过 get_tagsget_tag 查看。

参数:
**tag_dictdict

标签名称 : 标签值对的字典。

返回:
Self

对 self 的引用。

静态 sparse_to_dense(y_sparse, index)[source]#

将检测器的稀疏输出转换为密集格式。

参数:
y_sparsepd.Series
  • 如果 y_sparse 是一个带区间索引的 Series,它应该表示区间,其中 Series 的每个值都是一个区间的标签。未分类的区间应标记为 -1。区间绝不能有标签 0。

  • 如果 y_sparse 的索引不是区间集,则 Series 的值应表示变化点/异常的索引。

indexarray-like

包含 y_sparse 中事件索引的更大索引集,用作返回 Series 的索引。

返回:
pd.Series

返回一个以 index 为索引的 Series。* 如果 y_sparse 是一个变化点/异常的 Series,则返回的

Series 根据索引是否与异常/变化点相关联而标记为 0 和 1。其中 1 表示异常/变化点。

  • 如果 y_sparse 是一个区间 Series,则返回的 Series 根据其索引所属的区间进行标记。未落入任何区间的索引标记为 -1。

示例

>>> import pandas as pd
>>> from sktime.detection.base import BaseDetector
>>> y_sparse = pd.Series([2, 5, 7])  # Indices of changepoints/anomalies
>>> index = range(0, 8)
>>> BaseDetector.sparse_to_dense(y_sparse, index=index)
0    0
1    0
2    1
3    0
4    0
5    1
6    0
7    1
dtype: int64
>>> y_sparse = pd.Series(
...     [1, 2, 1],
...     index=pd.IntervalIndex.from_arrays(
...         [0, 4, 6], [4, 6, 10], closed="left"
...     )
... )
>>> index = range(10)
>>> BaseDetector.sparse_to_dense(y_sparse, index=index)
0    1
1    1
2    1
3    1
4    2
5    2
6    1
7    1
8    1
9    1
dtype: int64
transform(X)[source]#

在测试/部署数据上创建标签。

参数:
Xpd.DataFrame, pd.Series 或 np.ndarray

将要分配标签或分数的时间序列检测对象。

返回:
y带有与 X 相同索引的 pd.DataFrame

序列 X 的标签。

  • 如果 task"anomaly_detection",值是整数标签。值为 0 表示 X 在同一时间索引处没有异常。其他值表示异常。大多数检测器将返回 0 或 1,但有些如果可以检测不同类型的异常,可能会返回更多值。表示 X 在同一索引处是否为异常,0 表示否,1 表示是。

  • 如果 task"changepoint_detection",值是整数标签,指示变化点之间的区间标签。可能的标签是起始于 0 的整数。

  • 如果 task 是“segmentation”,值是区间的整数标签。可能的标签是起始于 0 的整数。

transform_scores(X)[source]#

返回测试/部署数据上预测标签的分数。

参数:
Xpd.DataFrame, pd.Series 或 np.ndarray

要标记的数据(时间序列)。

返回:
scores带有与 X 相同索引的 pd.DataFrame

序列 X 的分数。

update(X, y=None)[source]#

使用新数据和可选的真实标签更新模型。

参数:
Xpd.DataFrame, pd.Series 或 np.ndarray

用于更新模型(时间序列)的训练数据。

ypd.Series, 可选

如果检测器是监督式的,则为用于训练的真实标签。

返回:
self

对 self 的引用。

注意

更新已拟合模型,该模型更新以“_”结尾的属性。

update_predict(X, y=None)[source]#

使用新数据更新模型并为其创建标签。

参数:
Xpd.DataFrame, pd.Series 或 np.ndarray

用于更新模型的时间序列训练数据。

y带有 RangeIndex 的 pd.DataFrame, 可选。

用于训练的已知事件,位于 X 中,如果检测器是监督式的。

y 的每一行都是一个已知事件。可以包含以下列

  • "ilocs" - 始终存在。值通过 iloc 引用 X 的索引或 X 的索引范围来编码事件发生的地点/时间,如下所述。

  • "label" - 如果任务(通过标签)是带有标签的监督式或半监督式分段,或区间聚类。

"ilocs" 列和 "labels" 列中条目的含义描述了给定行中的事件,如下所示

  • 如果 task"anomaly_detection""change_point_detection""ilocs" 包含事件发生的 iloc 索引。

  • 如果 task"segmentation""ilocs" 包含基于 iloc 的区间的左闭合区间,解释为事件发生的索引范围。

"labels" 列中的标签(如果存在)指示事件的类型。

返回:
y带有 RangeIndex 的 pd.DataFrame

检测到或预测到的事件。

y 的每一行都是一个检测到或预测到的事件。可以包含以下列

  • "ilocs" - 始终存在。值通过 iloc 引用 X 的索引或 X 的索引范围来编码事件发生的地点/时间,如下所述。

  • "label" - 如果任务(通过标签)是监督式或半监督式分段,或区间聚类。

"ilocs" 列和 "labels" 列中条目的含义描述了给定行中的事件,如下所示

  • 如果 task"anomaly_detection""change_point_detection""ilocs" 包含事件发生的 iloc 索引。

  • 如果 task"segmentation""ilocs" 包含基于 iloc 的区间的左闭合区间,解释为事件发生的索引范围。

"labels" 列中的标签(如果存在)指示事件的类型。