TimeSeriesKMeans
#
- 类 TimeSeriesKMeans(n_clusters: int = 8, init_algorithm: str | Callable = 'random', metric: str | Callable = 'dtw', n_init: int = 10, max_iter: int = 300, tol: float = 1e-06, verbose: bool = False, random_state: int | RandomState = None, averaging_method: str | Callable[[ndarray], ndarray] = 'mean', distance_params: dict = None, average_params: dict = None)[source]#
时间序列 K-均值实现。
- 参数:
- n_clusters: int, 默认值 = 8
要形成的聚类数量以及要生成的质心数量。
- init_algorithm: str, np.ndarray (3d array of shape (n_clusters, n_dimensions,
series_length)), defaults = ‘random’ Method for initializing cluster centers or an array of initial cluster centers. If string, any of the following strings are valid
[‘kmeans++’, ‘random’, ‘forgy’].
- If 3D np.ndarray, initializes cluster centers with the provided array. The array
必须具有 (n_clusters, n_dimensions, series_length) 的形状,并且数组中的聚类数量必须与提供给 n_clusters 参数的值相同。
- metric: str 或 Callable, 默认值 = ‘dtw’
用于计算时间序列之间相似度的距离度量。以下任何一个都有效:[‘dtw’, ‘euclidean’, ‘erp’, ‘edr’, ‘lcss’, ‘squared’, ‘ddtw’, ‘wdtw’, ‘wddtw’]
- n_init: int, 默认值 = 10
使用不同质心种子运行 k-均值算法的次数。最终结果将是 n_init 次连续运行中根据惯性(inertia)表现最好的输出。
- max_iter: int, 默认值 = 300
k-均值算法单次运行的最大迭代次数。
- tol: float, 默认值 = 1e-6
两次连续迭代中聚类中心差异的 Frobenius 范数方面的相对容差,用于判断收敛。
- verbose: bool, 默认值 = False
详细模式。
- random_state: int 或 np.random.RandomState 实例或 None, 默认值 = None
确定质心初始化的随机数生成。
- averaging_method: str 或 Callable, 默认值 = ‘mean’
计算聚类平均值的方法。以下任何字符串都有效:[‘mean’, ‘dba’]。如果提供了 Callable,则必须采用 Callable[[np.ndarray], np.ndarray] 的形式。
- average_params: dict, 默认值 = None = 无参数
包含 averaging_method 关键字参数的字典。
- distance_params: dict, 默认值 = None = 无参数
包含所用距离度量关键字参数的字典。
- 属性:
- cluster_centers_: np.ndarray (3d array of shape (n_clusters, n_dimensions,
series_length) 的 3d 数组) 代表每个聚类中心的时间序列。如果算法在完全收敛之前停止,这些将与 labels_ 不一致。
- labels_: np.ndarray (形状为 (n_instance,) 的 1d 数组)
每个时间序列所属聚类的索引标签。
- inertia_: float
样本到其最近聚类中心的平方距离之和,如果提供了样本权重,则按样本权重加权。
- n_iter_: int
运行的迭代次数。
示例
>>> from sktime.datasets import load_arrow_head >>> from sktime.clustering.k_means import TimeSeriesKMeans >>> X_train, y_train = load_arrow_head(split="train") >>> X_test, y_test = load_arrow_head(split="test") >>> clusterer = TimeSeriesKMeans(n_clusters=3) >>> clusterer.fit(X_train) TimeSeriesKMeans(n_clusters=3) >>> y_pred = clusterer.predict(X_test)
方法
check_is_fitted
([method_name])检查估计器是否已拟合。
clone
()获取具有相同超参数和配置的对象的克隆。
clone_tags
(estimator[, tag_names])将另一个对象的标签作为动态覆盖克隆。
create_test_instance
([parameter_set])使用第一个测试参数集构造类的实例。
create_test_instances_and_names
([parameter_set])创建所有测试实例的列表及其名称列表。
fit
(X[, y])将时间序列聚类器拟合到训练数据。
fit_predict
(X[, y])计算聚类中心并预测每个时间序列的聚类索引。
get_class_tag
(tag_name[, tag_value_default])从类中获取类标签值,并考虑父类的标签继承。
从类中获取类标签,并考虑父类的标签继承。
获取自身的配置标志。
get_fitted_params
([deep])获取已拟合参数。
获取对象的参数默认值。
get_param_names
([sort])获取对象的参数名称。
get_params
([deep])获取此对象的参数值字典。
get_tag
(tag_name[, tag_value_default, ...])从实例获取标签值,并考虑标签级别的继承和覆盖。
get_tags
()从实例获取标签,并考虑标签级别的继承和覆盖。
get_test_params
([parameter_set])返回估计器的测试参数设置。
检查对象是否由其他 BaseObject 组成。
load_from_path
(serial)从文件位置加载对象。
load_from_serial
(serial)从序列化内存容器加载对象。
predict
(X[, y])预测 X 中每个样本所属的最接近的聚类。
预测 X 中序列的标签概率。
reset
()将对象重置为初始化后的干净状态。
save
([path, serialization_format])将序列化的自身保存到字节类对象或到 (.zip) 文件。
score
(X[, y])评估聚类器的质量得分。
set_config
(**config_dict)将配置标志设置为给定值。
set_params
(**params)设置此对象的参数。
set_random_state
([random_state, deep, ...])为自身设置 random_state 伪随机种子参数。
set_tags
(**tag_dict)将实例级别的标签覆盖设置为给定值。
- check_is_fitted(method_name=None)[source]#
检查估计器是否已拟合。
检查
_is_fitted
属性是否存在且为True
。在调用对象的fit
方法时,is_fitted
属性应设置为True
。如果不是,则引发
NotFittedError
。- 参数:
- method_namestr, 可选
调用此方法的名称。如果提供,错误消息将包含此信息。
- 引发:
- NotFittedError
如果估计器尚未拟合。
- clone()[source]#
获取具有相同超参数和配置的对象的克隆。
克隆是处于初始化后状态的不同对象,不共享引用。此函数等同于返回
sklearn.clone
的self
。等同于构造一个
type(self)
的新实例,使用self
的参数,即type(self)(**self.get_params(deep=False))
。如果
self
上设置了配置,克隆也将具有与原始对象相同的配置,等同于调用cloned_self.set_config(**self.get_config())
。其值也等同于调用
self.reset
,不同之处在于clone
返回一个新对象,而不是像reset
那样修改self
。- 引发:
- 如果克隆由于错误的
__init__
而不符合规范,则引发 RuntimeError。
- 如果克隆由于错误的
- classmethod clone_tags(estimator, tag_names=None)[source]#
将另一个对象的标签作为动态覆盖克隆。
每个兼容
scikit-base
的对象都有一个标签字典。标签可用于存储对象的元数据,或控制对象的行为。标签是实例
self
特定的键值对,它们是对象构造后不会更改的静态标志。clone_tags
从另一个对象estimator
设置动态标签覆盖。clone_tags
方法只能在对象的__init__
方法中、构造期间或通过__init__
构造后直接调用。动态标签被设置为
estimator
中标签的值,名称由tag_names
指定。The default of
tag_names
writes all tags fromestimator
toself
.Current tag values can be inspected by
get_tags
orget_tag
.- 参数:
- estimatorAn instance of :class:BaseObject or derived class
- tag_namesstr or list of str, default = None
Names of tags to clone. The default (
None
) clones all tags fromestimator
.
- Returns:
- self
Reference to
self
.
- classmethod create_test_instance(parameter_set='default')[source]#
使用第一个测试参数集构造类的实例。
- 参数:
- parameter_setstr, default=”default”
Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.
- Returns:
- instanceinstance of the class with default parameters
- classmethod create_test_instances_and_names(parameter_set='default')[source]#
创建所有测试实例的列表及其名称列表。
- 参数:
- parameter_setstr, default=”default”
Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.
- Returns:
- objslist of instances of cls
i-th instance is
cls(**cls.get_test_params()[i])
- nameslist of str, same length as objs
i-th element is name of i-th instance of obj in tests. The naming convention is
{cls.__name__}-{i}
if more than one instance, otherwise{cls.__name__}
- fit(X, y=None)[source]#
将时间序列聚类器拟合到训练数据。
- State change
Changes state to “fitted”.
- Writes to self
Sets self.is_fitted to True. Sets fitted model attributes ending in “_”.
- 参数:
- Xsktime compatible time series panel data container of Panel scitype
time series to fit estimator to.
Can be in any mtype of
Panel
scitype, for instancepd-multiindex: pd.DataFrame with columns = variables, index = pd.MultiIndex with first level = instance indices, second level = time indices
numpy3D: 3D np.array (any number of dimensions, equal length series) of shape [n_instances, n_dimensions, series_length]
or of any other supported
Panel
mtype
for list of mtypes, see
datatypes.SCITYPE_REGISTER
for specifications, see
examples/AA_datatypes_and_datasets.ipynb
Not all estimators support panels with multivariate or unequal length series, see the tag reference for details.
- yignored, exists for API consistency reasons.
- Returns:
- selfReference to self.
- fit_predict(X, y=None) ndarray [source]#
计算聚类中心并预测每个时间序列的聚类索引。
Convenience method; equivalent of calling fit(X) followed by predict(X)
- 参数:
- Xsktime compatible time series panel data container of Panel scitype
time series to cluster.
Can be in any mtype of
Panel
scitype, for instancepd-multiindex: pd.DataFrame with columns = variables, index = pd.MultiIndex with first level = instance indices, second level = time indices
numpy3D: 3D np.array (any number of dimensions, equal length series) of shape [n_instances, n_dimensions, series_length]
or of any other supported
Panel
mtype
for list of mtypes, see
datatypes.SCITYPE_REGISTER
for specifications, see
examples/AA_datatypes_and_datasets.ipynb
Not all estimators support panels with multivariate or unequal length series, see the tag reference for details.
- y: ignored, exists for API consistency reasons.
- Returns:
- np.ndarray (1d array of shape (n_instances,))
Index of the cluster each time series in X belongs to.
- classmethod get_class_tag(tag_name, tag_value_default=None)[source]#
从类中获取类标签值,并考虑父类的标签继承。
Every
scikit-base
compatible object has a dictionary of tags, which are used to store metadata about the object.The
get_class_tag
method is a class method, and retrieves the value of a tag taking into account only class-level tag values and overrides.It returns the value of the tag with name
tag_name
from the object, taking into account tag overrides, in the following order of descending priorityTags set in the
_tags
attribute of the class.Tags set in the
_tags
attribute of parent classes,
in order of inheritance.
Does not take into account dynamic tag overrides on instances, set via
set_tags
orclone_tags
, that are defined on instances.To retrieve tag values with potential instance overrides, use the
get_tag
method instead.- 参数:
- tag_namestr
Name of tag value.
- tag_value_defaultany type
Default/fallback value if tag is not found.
- Returns:
- tag_value
Value of the
tag_name
tag inself
. If not found, returnstag_value_default
.
- classmethod get_class_tags()[source]#
从类中获取类标签,并考虑父类的标签继承。
每个兼容
scikit-base
的对象都有一个标签字典。标签可用于存储对象的元数据,或控制对象的行为。标签是实例
self
特定的键值对,它们是对象构造后不会更改的静态标志。The
get_class_tags
method is a class method, and retrieves the value of a tag taking into account only class-level tag values and overrides.It returns a dictionary with keys being keys of any attribute of
_tags
set in the class or any of its parent classes.Values are the corresponding tag values, with overrides in the following order of descending priority
Tags set in the
_tags
attribute of the class.Tags set in the
_tags
attribute of parent classes,
in order of inheritance.
Instances can override these tags depending on hyper-parameters.
To retrieve tags with potential instance overrides, use the
get_tags
method instead.Does not take into account dynamic tag overrides on instances, set via
set_tags
orclone_tags
, that are defined on instances.For including overrides from dynamic tags, use
get_tags
.- collected_tagsdict
Dictionary of tag name : tag value pairs. Collected from
_tags
class attribute via nested inheritance. NOT overridden by dynamic tags set byset_tags
orclone_tags
.
- get_config()[source]#
获取自身的配置标志。
Configs are key-value pairs of
self
, typically used as transient flags for controlling behaviour.get_config
returns dynamic configs, which override the default configs.Default configs are set in the class attribute
_config
of the class or its parent classes, and are overridden by dynamic configs set viaset_config
.Configs are retained under
clone
orreset
calls.- Returns:
- config_dictdict
Dictionary of config name : config value pairs. Collected from _config class attribute via nested inheritance and then any overrides and new tags from _onfig_dynamic object attribute.
- get_fitted_params(deep=True)[source]#
获取已拟合参数。
- State required
Requires state to be “fitted”.
- 参数:
- deepbool, default=True
Whether to return fitted parameters of components.
If True, will return a dict of parameter name : value for this object, including fitted parameters of fittable components (= BaseEstimator-valued parameters).
If False, will return a dict of parameter name : value for this object, but not include fitted parameters of components.
- Returns:
- fitted_paramsdict with str-valued keys
Dictionary of fitted parameters, paramname : paramvalue keys-value pairs include
always: all fitted parameters of this object, as via
get_param_names
values are fitted parameter value for that key, of this objectif
deep=True
, also contains keys/value pairs of component parameters parameters of components are indexed as[componentname]__[paramname]
all parameters ofcomponentname
appear asparamname
with its valueif
deep=True
, also contains arbitrary levels of component recursion, e.g.,[componentname]__[componentcomponentname]__[paramname]
, etc
- classmethod get_param_defaults()[source]#
Get object’s parameter defaults.
- Returns:
- default_dict: dict[str, Any]
Keys are all parameters of
cls
that have a default defined in__init__
. Values are the defaults, as defined in__init__
.
- classmethod get_param_names(sort=True)[source]#
Get object’s parameter names.
- 参数:
- sortbool, default=True
Whether to return the parameter names sorted in alphabetical order (True), or in the order they appear in the class
__init__
(False).
- Returns:
- param_names: list[str]
List of parameter names of
cls
. Ifsort=False
, in same order as they appear in the class__init__
. Ifsort=True
, alphabetically ordered.
- get_params(deep=True)[source]#
获取此对象的参数值字典。
- 参数:
- deepbool, default=True
Whether to return parameters of components.
If
True
, will return adict
of parameter name : value for this object, including parameters of components (=BaseObject
-valued parameters).If
False
, will return adict
of parameter name : value for this object, but not include parameters of components.
- Returns:
- paramsdict with str-valued keys
Dictionary of parameters, paramname : paramvalue keys-value pairs include
always: all parameters of this object, as via
get_param_names
values are parameter value for that key, of this object values are always identical to values passed at constructionif
deep=True
, also contains keys/value pairs of component parameters parameters of components are indexed as[componentname]__[paramname]
all parameters ofcomponentname
appear asparamname
with its valueif
deep=True
, also contains arbitrary levels of component recursion, e.g.,[componentname]__[componentcomponentname]__[paramname]
, etc
- get_tag(tag_name, tag_value_default=None, raise_error=True)[source]#
从实例获取标签值,并考虑标签级别的继承和覆盖。
每个兼容
scikit-base
的对象都有一个标签字典。标签可用于存储对象的元数据,或控制对象的行为。标签是实例
self
特定的键值对,它们是对象构造后不会更改的静态标志。The
get_tag
method retrieves the value of a single tag with nametag_name
from the instance, taking into account tag overrides, in the following order of descending priorityTags set via
set_tags
orclone_tags
on the instance,
at construction of the instance.
Tags set in the
_tags
attribute of the class.Tags set in the
_tags
attribute of parent classes,
in order of inheritance.
- 参数:
- tag_namestr
Name of tag to be retrieved
- tag_value_defaultany type, optional; default=None
Default/fallback value if tag is not found
- raise_errorbool
whether a
ValueError
is raised when the tag is not found
- Returns:
- tag_valueAny
Value of the
tag_name
tag inself
. If not found, raises an error ifraise_error
is True, otherwise it returnstag_value_default
.
- 引发:
- ValueError, if
raise_error
isTrue
. The
ValueError
is then raised iftag_name
is not inself.get_tags().keys()
.
- ValueError, if
- get_tags()[source]#
从实例获取标签,并考虑标签级别的继承和覆盖。
每个兼容
scikit-base
的对象都有一个标签字典。标签可用于存储对象的元数据,或控制对象的行为。标签是实例
self
特定的键值对,它们是对象构造后不会更改的静态标志。The
get_tags
method returns a dictionary of tags, with keys being keys of any attribute of_tags
set in the class or any of its parent classes, or tags set viaset_tags
orclone_tags
.Values are the corresponding tag values, with overrides in the following order of descending priority
Tags set via
set_tags
orclone_tags
on the instance,
at construction of the instance.
Tags set in the
_tags
attribute of the class.Tags set in the
_tags
attribute of parent classes,
in order of inheritance.
- Returns:
- collected_tagsdict
Dictionary of tag name : tag value pairs. Collected from
_tags
class attribute via nested inheritance and then any overrides and new tags from_tags_dynamic
object attribute.
- is_composite()[source]#
检查对象是否由其他 BaseObject 组成。
A composite object is an object which contains objects, as parameters. Called on an instance, since this may differ by instance.
- Returns:
- composite: bool
Whether an object has any parameters whose values are
BaseObject
descendant instances.
- property is_fitted[source]#
Whether
fit
has been called.Inspects object’s
_is_fitted` attribute that should initialize to ``False
during object construction, and be set to True in calls to an object’s fit method.- Returns:
- bool
Whether the estimator has been fit.
- classmethod load_from_path(serial)[source]#
从文件位置加载对象。
- 参数:
- serialresult of ZipFile(path).open(“object)
- Returns:
- deserialized self resulting in output at
path
, ofcls.save(path)
- deserialized self resulting in output at
- classmethod load_from_serial(serial)[source]#
从序列化内存容器加载对象。
- 参数:
- serial1st element of output of
cls.save(None)
- serial1st element of output of
- Returns:
- deserialized self resulting in output
serial
, ofcls.save(None)
- deserialized self resulting in output
- predict(X, y=None) ndarray [source]#
预测 X 中每个样本所属的最接近的聚类。
- 参数:
- Xsktime compatible time series panel data container of Panel scitype
time series to cluster.
Can be in any mtype of
Panel
scitype, for instancepd-multiindex: pd.DataFrame with columns = variables, index = pd.MultiIndex with first level = instance indices, second level = time indices
numpy3D: 3D np.array (any number of dimensions, equal length series) of shape [n_instances, n_dimensions, series_length]
or of any other supported
Panel
mtype
for list of mtypes, see
datatypes.SCITYPE_REGISTER
for specifications, see
examples/AA_datatypes_and_datasets.ipynb
Not all estimators support panels with multivariate or unequal length series, see the tag reference for details.
- y: ignored, exists for API consistency reasons.
- Returns:
- np.ndarray (1d array of shape (n_instances,))
Index of the cluster each time series in X belongs to.
- predict_proba(X)[source]#
预测 X 中序列的标签概率。
Default behaviour is to call _predict and set the predicted class probability to 1, other class probabilities to 0. Override if better estimates are obtainable.
- 参数:
- Xsktime compatible time series panel data container of Panel scitype
time series to cluster.
Can be in any mtype of
Panel
scitype, for instancepd-multiindex: pd.DataFrame with columns = variables, index = pd.MultiIndex with first level = instance indices, second level = time indices
numpy3D: 3D np.array (any number of dimensions, equal length series) of shape [n_instances, n_dimensions, series_length]
or of any other supported
Panel
mtype
for list of mtypes, see
datatypes.SCITYPE_REGISTER
for specifications, see
examples/AA_datatypes_and_datasets.ipynb
Not all estimators support panels with multivariate or unequal length series, see the tag reference for details.
- Returns:
- y2D array of shape [n_instances, n_classes] - predicted class probabilities
1st dimension indices correspond to instance indices in X 2nd dimension indices correspond to possible labels (integers) (i, j)-th entry is predictive probability that i-th instance is of class j
- reset()[source]#
将对象重置为初始化后的干净状态。
Results in setting
self
to the state it had directly after the constructor call, with the same hyper-parameters. Config values set byset_config
are also retained.A
reset
call deletes any object attributes, excepthyper-parameters = arguments of
__init__
written toself
, e.g.,self.paramname
whereparamname
is an argument of__init__
object attributes containing double-underscores, i.e., the string “__”. For instance, an attribute named “__myattr” is retained.
config attributes, configs are retained without change. That is, results of
get_config
before and afterreset
are equal.
Class and object methods, and class attributes are also unaffected.
Equivalent to
clone
, with the exception thatreset
mutatesself
instead of returning a new object.After a
self.reset()
call,self
is equal in value and state, to the object obtained after a constructor call``type(self)(**self.get_params(deep=False))``.- Returns:
- self
Instance of class reset to a clean post-init state but retaining the current hyper-parameter values.
- save(path=None, serialization_format='pickle')[source]#
将序列化的自身保存到字节类对象或到 (.zip) 文件。
Behaviour: if
path
is None, returns an in-memory serialized self ifpath
is a file location, stores self at that location as a zip filesaved files are zip files with following contents: _metadata - contains class of self, i.e., type(self) _obj - serialized self. This class uses the default serialization (pickle).
- 参数:
- pathNone or file location (str or Path)
if None, self is saved to an in-memory object if file location, self is saved to that file location. If
path=”estimator” then a zip file
estimator.zip
will be made at cwd.path=”/home/stored/estimator” then a zip file
estimator.zip
will be
stored in
/home/stored/
.- serialization_format: str, default = “pickle”
Module to use for serialization. The available options are “pickle” and “cloudpickle”. Note that non-default formats might require installation of other soft dependencies.
- Returns:
- if
path
is None - in-memory serialized self - if
path
is file location - ZipFile with reference to the file
- if
- score(X, y=None) float [source]#
评估聚类器的质量得分。
- 参数:
- Xnp.ndarray (2d or 3d array of shape (n_instances, series_length) or shape
(n_instances, n_dimensions, series_length)) or pd.DataFrame (where each column is a dimension, each cell is a pd.Series (any number of dimensions, equal or unequal length series)). Time series instances to train clusterer and then have indexes each belong to return.
- y: ignored, exists for API consistency reasons.
- Returns:
- scorefloat
Score of the clusterer.
- set_config(**config_dict)[source]#
将配置标志设置为给定值。
- 参数:
- config_dictdict
Dictionary of config name : config value pairs. Valid configs, values, and their meaning is listed below
- displaystr, “diagram” (default), or “text”
how jupyter kernels display instances of self
“diagram” = html box diagram representation
“text” = string printout
- print_changed_onlybool, default=True
whether printing of self lists only self-parameters that differ from defaults (False), or all parameter names and values (False). Does not nest, i.e., only affects self and not component estimators.
- warningsstr, “on” (default), or “off”
whether to raise warnings, affects warnings from sktime only
“on” = will raise warnings from sktime
“off” = will not raise warnings from sktime
- backend:parallelstr, optional, default=”None”
backend to use for parallelization when broadcasting/vectorizing, one of
“None”: executes loop sequentally, simple list comprehension
“loky”, “multiprocessing” and “threading”: uses
joblib.Parallel
“joblib”: custom and 3rd party
joblib
backends, e.g.,spark
“dask”: uses
dask
, requiresdask
package in environment“ray”: uses
ray
, requiresray
package in environment
- backend:parallel:paramsdict, optional, default={} (no parameters passed)
additional parameters passed to the parallelization backend as config. Valid keys depend on the value of
backend:parallel
“None”: no additional parameters,
backend_params
is ignored“loky”, “multiprocessing” and “threading”: default
joblib
backends any valid keys forjoblib.Parallel
can be passed here, e.g.,n_jobs
, with the exception ofbackend
which is directly controlled bybackend
. Ifn_jobs
is not passed, it will default to-1
, other parameters will default tojoblib
defaults.“joblib”: custom and 3rd party
joblib
backends, e.g.,spark
. Any valid keys forjoblib.Parallel
can be passed here, e.g.,n_jobs
,backend
must be passed as a key ofbackend_params
in this case. Ifn_jobs
is not passed, it will default to-1
, other parameters will default tojoblib
defaults.“dask”: any valid keys for
dask.compute
can be passed, e.g.,scheduler
“ray”: The following keys can be passed
“ray_remote_args”: dictionary of valid keys for
ray.init
- “shutdown_ray”: bool, default=True; False prevents
ray
from shutting down after parallelization.
- “shutdown_ray”: bool, default=True; False prevents
“logger_name”: str, default=”ray”; name of the logger to use.
“mute_warnings”: bool, default=False; if True, suppresses warnings
- Returns:
- selfreference to self.
Notes
Changes object state, copies configs in config_dict to self._config_dynamic.
- set_params(**params)[source]#
设置此对象的参数。
The method works on simple skbase objects as well as on composite objects. Parameter key strings
<component>__<parameter>
can be used for composites, i.e., objects that contain other objects, to access<parameter>
in the component<component>
. The string<parameter>
, without<component>__
, can also be used if this makes the reference unambiguous, e.g., there are no two parameters of components with the name<parameter>
.- 参数:
- **paramsdict
BaseObject parameters, keys must be
<component>__<parameter>
strings.__
suffixes can alias full strings, if unique among get_params keys.
- Returns:
- selfreference to self (after parameters have been set)
- set_random_state(random_state=None, deep=True, self_policy='copy')[source]#
为自身设置 random_state 伪随机种子参数。
Finds
random_state
named parameters viaself.get_params
, and sets them to integers derived fromrandom_state
viaset_params
. These integers are sampled from chain hashing viasample_dependent_seed
, and guarantee pseudo-random independence of seeded random generators.Applies to
random_state
parameters inself
, depending onself_policy
, and remaining component objects if and only ifdeep=True
.Note: calls
set_params
even ifself
does not have arandom_state
, or none of the components have arandom_state
parameter. Therefore,set_random_state
will reset anyscikit-base
object, even those without arandom_state
parameter.- 参数:
- random_stateint, RandomState instance or None, default=None
Pseudo-random number generator to control the generation of the random integers. Pass int for reproducible output across multiple function calls.
- deepbool, default=True
Whether to set the random state in skbase object valued parameters, i.e., component estimators.
If False, will set only
self
’srandom_state
parameter, if exists.If True, will set
random_state
parameters in component objects as well.
- self_policystr, one of {“copy”, “keep”, “new”}, default=”copy”
“copy” :
self.random_state
is set to inputrandom_state
“keep” :
self.random_state
is kept as is“new” :
self.random_state
is set to a new random state,
derived from input
random_state
, and in general different from it
- Returns:
- selfreference to self
- set_tags(**tag_dict)[source]#
将实例级别的标签覆盖设置为给定值。
Every
scikit-base
compatible object has a dictionary of tags, which are used to store metadata about the object.Tags are key-value pairs specific to an instance
self
, they are static flags that are not changed after construction of the object. They may be used for metadata inspection, or for controlling behaviour of the object.set_tags
sets dynamic tag overrides to the values as specified intag_dict
, with keys being the tag name, and dict values being the value to set the tag to.The
set_tags
method should be called only in the__init__
method of an object, during construction, or directly after construction via__init__
.Current tag values can be inspected by
get_tags
orget_tag
.- 参数:
- **tag_dictdict
Dictionary of tag name: tag value pairs.
- Returns:
- Self
Reference to self.
- classmethod get_test_params(parameter_set='default')[source]#
返回估计器的测试参数设置。
- 参数:
- parameter_setstr, default=”default”
Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return
"default"
set.
- Returns:
- paramsdict or list of dict, default = {}
Parameters to create testing instances of the class Each dict are parameters to construct an “interesting” test instance, i.e.,
MyClass(**params)
orMyClass(**params[i])
creates a valid test instance.create_test_instance
uses the first (or only) dictionary inparams