ProximityStump#

class ProximityStump(random_state=None, distance_measure=None, verbosity=0, n_jobs=1)[source]#

邻近树桩类。

建模一个使用距离度量来划分数据的决策树桩。

参数:
random_state: integer, 随机状态
distance_measure: ``None`` (默认) 或 str; 如果是 str, 则是其中一种

“euclidean”, “dtw”, “ddtw”, “wdtw”, “wddtw”, “msm”, “lcss”, “erp” 要使用的距离度量; 如果是 None, 则从可用距离列表中随机选择距离

verbosity: 日志详细程度
n_jobs: 并行运行的作业数 *跨线程*
属性:
is_fitted

是否已调用 fit

示例

>>> from sktime.classification.distance_based import ProximityStump
>>> from sktime.datasets import load_unit_test
>>> X_train, y_train = load_unit_test(split="train")  
>>> X_test, y_test = load_unit_test(split="test")  
>>> clf = ProximityStump()  
>>> clf.fit(X_train, y_train)  
ProximityStump(...)
>>> y_pred = clf.predict(X_test)  

方法

check_is_fitted([method_name])

检查估计器是否已拟合。

clone()

获取具有相同超参数和配置的对象的克隆。

clone_tags(estimator[, tag_names])

从另一个对象克隆标签作为动态覆盖。

create_test_instance([parameter_set])

使用第一个测试参数集构造类的一个实例。

create_test_instances_and_names([parameter_set])

创建所有测试实例的列表及其名称列表。

distance_to_exemplars(X)

查找与范例的距离。

find_closest_exemplar_indices(X)

查找数据帧中每个实例的最接近范例索引。

fit(X, y)

将时间序列分类器拟合到训练数据。

fit_predict(X, y[, cv, change_state])

拟合并预测 X 中序列的标签。

fit_predict_proba(X, y[, cv, change_state])

拟合并预测 X 中序列的标签概率。

get_class_tag(tag_name[, tag_value_default])

从类中获取类标签值,并继承父类的标签级别。

get_class_tags()

从类中获取类标签,并继承父类的标签级别。

get_config()

获取 self 的配置标志。

get_exemplars()

从数据帧和类值列表中提取范例。

get_fitted_params([deep])

获取已拟合参数。

get_param_defaults()

获取对象的参数默认值。

get_param_names([sort])

获取对象的参数名称。

get_params([deep])

获取此对象的参数值字典。

get_tag(tag_name[, tag_value_default, ...])

从实例中获取标签值,并考虑标签级别继承和覆盖。

get_tags()

从实例中获取标签,并考虑标签级别继承和覆盖。

get_test_params([parameter_set])

返回估计器的测试参数设置。

grow()

生长树桩,为每个范例创建分支。

is_composite()

检查对象是否由其他 BaseObjects 组成。

load_from_path(serial)

从文件位置加载对象。

load_from_serial(serial)

从序列化内存容器加载对象。

pick_distance_measure()

选择一个距离度量。

predict(X)

预测 X 中序列的标签。

predict_proba(X)

预测 X 中序列的标签概率。

reset()

将对象重置为初始状态后的干净状态。

save([path, serialization_format])

将序列化的 self 保存到字节类对象或 (.zip) 文件。

score(X, y)

在 X 上根据真实标签评估预测标签的得分。

set_config(**config_dict)

将配置标志设置为给定值。

set_params(**params)

设置此对象的参数。

set_random_state([random_state, deep, ...])

为 self 设置 random_state 伪随机种子参数。

set_tags(**tag_dict)

将实例级别标签覆盖设置为给定值。

pick_distance_measure()[source]#

选择一个距离度量。

参数:
selfProximityStump 对象。
返回:
ret: distance measure
get_exemplars()[source]#

从数据帧和类值列表中提取范例。

参数:
selfProximityStump,即邻近树桩对象。
返回:
ret: 每类一个范例
distance_to_exemplars(X)[source]#

查找与范例的距离。

参数:
X: 包含实例列表的数据集
返回:
ret: 2d numpy array,表示每个实例到每个范例的距离

范例(实例对范例)

find_closest_exemplar_indices(X)[source]#

查找数据帧中每个实例的最接近范例索引。

参数:
X: 包含实例的数据帧
返回:
ret: 1d numpy array,每个实例一个索引,

反映了最接近范例的索引

grow()[source]#

生长树桩,为每个范例创建分支。

classmethod get_test_params(parameter_set='default')[source]#

返回估计器的测试参数设置。

返回:
paramsdict 或 list of dict, default = {}

用于创建类测试实例的参数。每个 dict 是构造一个“有趣的”测试实例的参数,即 MyClass(**params)MyClass(**params[i]) 创建一个有效的测试实例。create_test_instance 使用 params 中的第一个(或唯一)字典。

check_is_fitted(method_name=None)[source]#

检查估计器是否已拟合。

检查 _is_fitted 属性是否存在且为 Trueis_fitted 属性应在调用对象的 fit 方法时设置为 True

如果不存在,则引发 NotFittedError

参数:
method_namestr, optional

调用此函数的方法名称。如果提供,错误消息将包含此信息。

引发:
NotFittedError

如果估计器尚未拟合。

clone()[source]#

获取具有相同超参数和配置的对象的克隆。

克隆是具有相同超参数和配置的不同对象,处于初始化后状态。此函数等同于返回 selfsklearn.clone

等同于构造一个 type(self) 的新实例,参数与 self 相同,即 type(self)(**self.get_params(deep=False))

如果在 self 上设置了配置,克隆也将具有与原始对象相同的配置,等同于调用 cloned_self.set_config(**self.get_config())

值也等同于调用 self.reset,区别在于 clone 返回一个新对象,而不是像 reset 那样改变 self

引发:
如果由于 __init__ 故障导致克隆不符合要求,则引发 RuntimeError。
clone_tags(estimator, tag_names=None)[source]#

从另一个对象克隆标签作为动态覆盖。

每个 scikit-base 兼容对象都有一个标签字典。标签可用于存储关于对象的元数据,或控制对象的行为。

标签是特定于实例 self 的键值对,它们是静态标志,在对象构造后不会改变。

clone_tags 从另一个对象 estimator 设置动态标签覆盖。

clone_tags 方法应仅在对象构造期间或通过 __init__ 直接在构造后在对象的 __init__ 方法中调用。

动态标签设置为 estimator 中标签的值,名称在 tag_names 中指定。

tag_names 的默认值会将 estimator 中的所有标签写入 self

当前标签值可以通过 get_tagsget_tag 检查。

参数:
estimator:class:BaseObject 或其派生类的一个实例
tag_namesstr 或 list of str, default = None

要克隆的标签名称。默认值 (None) 克隆 estimator 中的所有标签。

返回:
self

self 的引用。

classmethod create_test_instance(parameter_set='default')[source]#

使用第一个测试参数集构造类的一个实例。

参数:
parameter_setstr, default=”default”

要返回的测试参数集的名称,用于测试。如果未为某个值定义特殊参数,将返回 “default” 集。

返回:
instance具有默认参数的类实例
classmethod create_test_instances_and_names(parameter_set='default')[source]#

创建所有测试实例的列表及其名称列表。

参数:
parameter_setstr, default=”default”

要返回的测试参数集的名称,用于测试。如果未为某个值定义特殊参数,将返回 “default” 集。

返回:
objscls 实例列表

第 i 个实例是 cls(**cls.get_test_params()[i])

namesstr 列表,与 objs 长度相同

第 i 个元素是测试中 obj 的第 i 个实例的名称。如果实例多于一个,命名约定为 {cls.__name__}-{i},否则为 {cls.__name__}

fit(X, y)[source]#

将时间序列分类器拟合到训练数据。

状态更改

将状态更改为“fitted”。

写入 self

将 self.is_fitted 设置为 True。设置以“_”结尾的已拟合模型属性。

参数:
Xsktime 兼容的时间序列面板数据容器,Panel scitype 类型

用于拟合估计器的时间序列。

可以是 Panel scitype 的任何 mtype,例如

  • pd-multiindex: pd.DataFrame,列为变量,索引为 pd.MultiIndex,第一层为实例索引,第二层为时间索引

  • numpy3D: 3D np.array(任意维度,等长序列),形状为 [n_instances, n_dimensions, series_length]

  • 或任何其他支持的 Panel mtype

有关 mtypes 列表,请参阅 datatypes.SCITYPE_REGISTER

有关规范,请参阅 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多元或不等长序列的面板,详细信息请参阅标签参考

ysktime 兼容的表格数据容器,Table scitype 类型

1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions] 类标签,用于拟合。第 0 个索引对应于 X 中的实例索引。第 1 个索引(如果适用)对应于 X 中的多输出向量索引。支持的 sktime 类型:np.ndarray (1D, 2D)、pd.Series、pd.DataFrame

返回:
self指向 self 的引用。
fit_predict(X, y[, cv, change_state])[source]#

拟合并预测 X 中序列的标签。

生成样本内预测和交叉验证样本外预测的便捷方法。

如果 change_state=True,则写入 self。

将 self.is_fitted 设置为 True。设置以“_”结尾的已拟合模型属性。

如果 change_state=False,则不更新状态。

参数:
Xsktime 兼容的时间序列面板数据容器,Panel scitype 类型

用于拟合和预测标签的时间序列。

可以是 Panel scitype 的任何 mtype,例如

  • pd-multiindex: pd.DataFrame,列为变量,索引为 pd.MultiIndex,第一层为实例索引,第二层为时间索引

  • numpy3D: 3D np.array(任意维度,等长序列),形状为 [n_instances, n_dimensions, series_length]

  • 或任何其他支持的 Panel mtype

有关 mtypes 列表,请参阅 datatypes.SCITYPE_REGISTER

有关规范,请参阅 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多元或不等长序列的面板,详细信息请参阅标签参考

ysktime 兼容的表格数据容器,Table scitype 类型

1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions] 类标签,用于拟合。第 0 个索引对应于 X 中的实例索引。第 1 个索引(如果适用)对应于 X 中的多输出向量索引。支持的 sktime 类型:np.ndarray (1D, 2D)、pd.Series、pd.DataFrame

cvNone, int, 或 sklearn 交叉验证对象, 可选, default=None
  • None : 预测是样本内的,等同于 fit(X, y).predict(X)

  • cv : 预测等同于 fit(X_train, y_train).predict(X_test),其中多个 X_train, y_train, X_testcv 折叠中获得。返回的 y 是所有测试折叠预测的并集,cv 测试折叠必须不相交。

  • int : 等同于 cv=KFold(cv, shuffle=True, random_state=x),即 k 折交叉验证样本外预测,其中 random_state x 取自 self(如果存在),否则 x=None

change_statebool, 可选 (default=True)
  • 如果为 False,则不会更改分类器的状态,即使用副本运行拟合/预测序列,self 不会改变。

  • 如果为 True,则将 self 拟合到完整的 X 和 y,结束状态将等同于运行 fit(X, y)。

返回:
y_predsktime 兼容的表格数据容器, Table scitype 类型

预测的类标签

1D 可迭代对象,形状为 [n_instances],或 2D 可迭代对象,形状为 [n_instances, n_dimensions]。

第 0 个索引对应于 X 中的实例索引,第 1 个索引(如果适用)对应于 X 中的多输出向量索引。

如果 y 是单变量(一维),则是 1D np.npdarray;否则,与 fit 中传入的 y 类型相同。

fit_predict_proba(X, y[, cv, change_state])[source]#

拟合并预测 X 中序列的标签概率。

生成样本内预测和交叉验证样本外预测的便捷方法。

如果 change_state=True,则写入 self。

将 self.is_fitted 设置为 True。设置以“_”结尾的已拟合模型属性。

如果 change_state=False,则不更新状态。

参数:
Xsktime 兼容的时间序列面板数据容器,Panel scitype 类型

用于拟合和预测标签的时间序列。

可以是 Panel scitype 的任何 mtype,例如

  • pd-multiindex: pd.DataFrame,列为变量,索引为 pd.MultiIndex,第一层为实例索引,第二层为时间索引

  • numpy3D: 3D np.array(任意维度,等长序列),形状为 [n_instances, n_dimensions, series_length]

  • 或任何其他支持的 Panel mtype

有关 mtypes 列表,请参阅 datatypes.SCITYPE_REGISTER

有关规范,请参阅 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多元或不等长序列的面板,详细信息请参阅标签参考

ysktime 兼容的表格数据容器,Table scitype 类型

1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions] 类标签,用于拟合。第 0 个索引对应于 X 中的实例索引。第 1 个索引(如果适用)对应于 X 中的多输出向量索引。支持的 sktime 类型:np.ndarray (1D, 2D)、pd.Series、pd.DataFrame

cvNone, int, 或 sklearn 交叉验证对象, 可选, default=None
  • None : 预测是样本内的,等同于 fit(X, y).predict(X)

  • cv : 预测等同于 fit(X_train, y_train).predict(X_test),其中多个 X_train, y_train, X_testcv 折叠中获得。返回的 y 是所有测试折叠预测的并集,cv 测试折叠必须不相交。

  • int : 等同于 cv=KFold(cv, shuffle=True, random_state=x),即 k 折交叉验证样本外预测,其中 random_state x 取自 self(如果存在),否则 x=None

change_statebool, 可选 (default=True)
  • 如果为 False,则不会更改分类器的状态,即使用副本运行拟合/预测序列,self 不会改变。

  • 如果为 True,则将 self 拟合到完整的 X 和 y,结束状态将等同于运行 fit(X, y)。

返回:
y_pred2D np.array of int, 形状为 [n_instances, n_classes]

预测的类标签概率。第 0 个索引对应于 X 中的实例索引。第 1 个索引对应于类索引,顺序与 self.classes_ 中的顺序相同。条目是预测的类概率,总和为 1。

classmethod get_class_tag(tag_name, tag_value_default=None)[source]#

从类中获取类标签值,并继承父类的标签级别。

每个 scikit-base 兼容对象都有一个标签字典,用于存储关于对象的元数据。

get_class_tag 方法是类方法,它检索标签的值,仅考虑类级别的标签值和覆盖。

它从对象中返回名称为 tag_name 的标签的值,考虑标签覆盖,优先级从高到低依次为

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按继承顺序。

不考虑通过 set_tagsclone_tags 在实例上设置的动态标签覆盖。

要检索可能包含实例覆盖的标签值,请改用 get_tag 方法。

参数:
tag_namestr

标签值的名称。

tag_value_defaultany type

未找到标签时的默认/回退值。

返回:
tag_value

self 中名称为 tag_name 的标签的值。如果未找到,则返回 tag_value_default

classmethod get_class_tags()[source]#

从类中获取类标签,并继承父类的标签级别。

每个 scikit-base 兼容对象都有一个标签字典。标签可用于存储关于对象的元数据,或控制对象的行为。

标签是特定于实例 self 的键值对,它们是静态标志,在对象构造后不会改变。

get_class_tags 方法是类方法,它检索标签的值,仅考虑类级别的标签值和覆盖。

它返回一个字典,其键是类或其任何父类中设置的任何 _tags 属性的键。

值是相应的标签值,覆盖顺序优先级从高到低依次为

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按继承顺序。

实例可以根据超参数覆盖这些标签。

要检索包含潜在实例覆盖的标签,请使用 get_tags 方法。

不考虑通过 set_tagsclone_tags 在实例上设置的动态标签覆盖。

要包含动态标签的覆盖,请使用 get_tags

collected_tagsdict

标签名称:标签值 对的字典。通过嵌套继承从 _tags 类属性收集。不会被 set_tagsclone_tags 设置的动态标签覆盖。

get_config()[source]#

获取 self 的配置标志。

配置是 self 的键值对,通常用作控制行为的瞬态标志。

get_config 返回动态配置,它会覆盖默认配置。

默认配置设置在类或其父类的类属性 _config 中,并通过 set_config 设置的动态配置覆盖。

配置在 clonereset 调用下保留。

返回:
config_dictdict

配置名称:配置值 对的字典。通过嵌套继承从 _config 类属性收集,然后通过 _onfig_dynamic 对象属性收集任何覆盖和新标签。

get_fitted_params(deep=True)[source]#

获取已拟合参数。

所需状态

要求状态为“fitted”。

参数:
deepbool, default=True

是否返回组件的已拟合参数。

  • 如果为 True,将返回此对象的参数名称:值 字典,包括可拟合组件的已拟合参数(= BaseEstimator 类型参数)。

  • 如果为 False,将返回此对象的参数名称:值 字典,但不包括组件的已拟合参数。

返回:
fitted_paramsdict,键为 str 类型

已拟合参数字典,paramname : paramvalue 键值对包括

  • 始终:此对象的所有已拟合参数,如通过 get_param_names 获取。值为该键对应的此对象的已拟合参数值。

  • 如果 deep=True,也包含组件参数的键/值对。组件参数的索引格式为 [componentname]__[paramname]componentname 的所有参数以 paramname 的形式出现,并带有其值。

  • 如果 deep=True,还包含任意级别的组件递归,例如 [componentname]__[componentcomponentname]__[paramname] 等。

classmethod get_param_defaults()[source]#

获取对象的参数默认值。

返回:
default_dict: dict[str, Any]

键是 cls 的所有在 __init__ 中定义了默认值的参数。值是默认值,如在 __init__ 中定义的。

classmethod get_param_names(sort=True)[source]#

获取对象的参数名称。

参数:
sortbool, default=True

是否按字母顺序排序(True)或按它们在类 __init__ 中出现的顺序(False)返回参数名称。

返回:
param_names: list[str]

cls 的参数名称列表。如果 sort=False,则按它们在类 __init__ 中出现的顺序排列。如果 sort=True,则按字母顺序排列。

get_params(deep=True)[source]#

获取此对象的参数值字典。

参数:
deepbool, default=True

是否返回组件的参数。

  • 如果为 True,将返回此对象的参数名称:值 dict,包括组件(= BaseObject 值参数)的参数。

  • 如果为 False,将返回此对象的参数名称:值 dict,但不包括组件的参数。

返回:
paramsdict,键为 str 类型

参数字典,paramname : paramvalue 键值对包括

  • 始终:此对象的所有参数,如通过 get_param_names 获取。值为该键对应的此对象的参数值。值始终与构造时传入的值相同。

  • 如果 deep=True,也包含组件参数的键/值对。组件参数的索引格式为 [componentname]__[paramname]componentname 的所有参数以 paramname 的形式出现,并带有其值。

  • 如果 deep=True,还包含任意级别的组件递归,例如 [componentname]__[componentcomponentname]__[paramname] 等。

get_tag(tag_name, tag_value_default=None, raise_error=True)[source]#

从实例中获取标签值,并考虑标签级别继承和覆盖。

每个 scikit-base 兼容对象都有一个标签字典。标签可用于存储关于对象的元数据,或控制对象的行为。

标签是特定于实例 self 的键值对,它们是静态标志,在对象构造后不会改变。

get_tag 方法从实例中检索名称为 tag_name 的单个标签的值,并考虑标签覆盖,优先级从高到低依次为

  1. 在实例上通过 set_tagsclone_tags 设置的标签,

在实例构造时设置的标签。

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按继承顺序。

参数:
tag_namestr

要检索的标签名称。

tag_value_defaultany type, optional; default=None

未找到标签时的默认/回退值。

raise_errorbool

当未找到标签时是否引发 ValueError

返回:
tag_valueAny

self 中名称为 tag_name 的标签的值。如果未找到,并且 raise_error 为 True,则引发错误,否则返回 tag_value_default

引发:
ValueError, 如果 raise_errorTrue

tag_name 不在 self.get_tags().keys() 中时,将引发 ValueError

get_tags()[source]#

从实例中获取标签,并考虑标签级别继承和覆盖。

每个 scikit-base 兼容对象都有一个标签字典。标签可用于存储关于对象的元数据,或控制对象的行为。

标签是特定于实例 self 的键值对,它们是静态标志,在对象构造后不会改变。

get_tags 方法返回一个标签字典,其键是类或其任何父类中设置的任何 _tags 属性的键,或通过 set_tagsclone_tags 设置的标签。

值是相应的标签值,覆盖顺序优先级从高到低依次为

  1. 在实例上通过 set_tagsclone_tags 设置的标签,

在实例构造时设置的标签。

  1. 在类的 _tags 属性中设置的标签。

  2. 在父类的 _tags 属性中设置的标签,

按继承顺序。

返回:
collected_tagsdict

标签名称:标签值 对的字典。通过嵌套继承从 _tags 类属性收集,然后通过 _tags_dynamic 对象属性收集任何覆盖和新标签。

is_composite()[source]#

检查对象是否由其他 BaseObjects 组成。

复合对象是指包含其他对象作为参数的对象。在实例上调用,因为这可能因实例而异。

返回:
composite: bool

对象是否具有任何其值为 BaseObject 后代实例的参数。

is_fitted[source]#

是否已调用 fit

检查对象的 _is_fitted` 属性 ,该属性应在对象构建期间初始化为 ``False,并在调用对象的 fit 方法时设置为 True。

返回:
bool

评估器是否已被 fit

classmethod load_from_path(serial)[source]#

从文件位置加载对象。

参数:
serialZipFile(path).open(“object”) 的结果
返回:
反序列化的 self,其输出位于 path,来自于 cls.save(path)
classmethod load_from_serial(serial)[source]#

从序列化内存容器加载对象。

参数:
serialcls.save(None) 输出的第一个元素
返回:
反序列化的 self,其输出为 serial,来自于 cls.save(None)
predict(X)[source]#

预测 X 中序列的标签。

参数:
Xsktime 兼容的时间序列面板数据容器,Panel scitype 类型

用于预测标签的时间序列。

可以是 Panel scitype 的任何 mtype,例如

  • pd-multiindex: pd.DataFrame,列为变量,索引为 pd.MultiIndex,第一层为实例索引,第二层为时间索引

  • numpy3D: 3D np.array(任意维度,等长序列),形状为 [n_instances, n_dimensions, series_length]

  • 或任何其他支持的 Panel mtype

有关 mtypes 列表,请参阅 datatypes.SCITYPE_REGISTER

有关规范,请参阅 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多元或不等长序列的面板,详细信息请参阅标签参考

返回:
y_predsktime 兼容的表格数据容器, Table scitype 类型

预测的类标签

1D 可迭代对象,形状为 [n_instances],或 2D 可迭代对象,形状为 [n_instances, n_dimensions]。

第 0 个索引对应于 X 中的实例索引,第 1 个索引(如果适用)对应于 X 中的多输出向量索引。

如果 y 是单变量(一维),则是 1D np.npdarray;否则,与 fit 中传入的 y 类型相同。

predict_proba(X)[source]#

预测 X 中序列的标签概率。

参数:
Xsktime 兼容的时间序列面板数据容器,Panel scitype 类型

用于预测标签的时间序列。

可以是 Panel scitype 的任何 mtype,例如

  • pd-multiindex: pd.DataFrame,列为变量,索引为 pd.MultiIndex,第一层为实例索引,第二层为时间索引

  • numpy3D: 3D np.array(任意维度,等长序列),形状为 [n_instances, n_dimensions, series_length]

  • 或任何其他支持的 Panel mtype

有关 mtypes 列表,请参阅 datatypes.SCITYPE_REGISTER

有关规范,请参阅 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多元或不等长序列的面板,详细信息请参阅标签参考

返回:
y_pred2D np.array of int, 形状为 [n_instances, n_classes]

预测的类标签概率,0 索引对应于 X 中的实例索引,1 索引对应于类索引,顺序与 self.classes_ 中相同,条目是预测的类概率,总和为 1

reset()[source]#

将对象重置为初始状态后的干净状态。

self 设置为其在构造函数调用后直接所处的状态,并保留相同的超参数。通过 set_config 设置的配置值也得到保留。

reset 调用会删除除以下属性之外的任何对象属性:

  • 超参数 = 写入 self__init__ 的参数,例如,self.paramname,其中 paramname__init__ 的参数

  • 包含双下划线的对象属性,即字符串“__”。例如,名为“__myattr”的属性会被保留。

  • 配置属性,配置保持不变。也就是说,在 reset 之前和之后调用 get_config 的结果是相同的。

类方法、对象方法和类属性也不受影响。

等同于 clone,不同之处在于 reset 会修改 self,而不是返回一个新对象。

在调用 self.reset() 后,self 在值和状态上等同于构造函数调用 ``type(self)(**self.get_params(deep=False))`` 后获得的对象。

返回:
self

将类实例重置为干净的后初始化状态,但保留当前的超参数值。

save(path=None, serialization_format='pickle')[source]#

将序列化的 self 保存到字节类对象或 (.zip) 文件。

行为:如果 path 为 None,则返回内存中的序列化 self;如果 path 是文件位置,则将 self 存储在该位置作为 zip 文件

保存的文件是包含以下内容的 zip 文件:_metadata - 包含 self 的类,即 type(self) _obj - 序列化的 self。此类使用默认序列化(pickle)。

参数:
pathNone 或文件位置 (str 或 Path)

如果为 None,则将 self 保存到内存对象中;如果是文件位置,则将 self 保存到该文件位置。如果

  • path=”estimator”,则会在当前工作目录创建 zip 文件 estimator.zip

  • path=”/home/stored/estimator”,则 zip 文件 estimator.zip 将会

存储在 /home/stored/ 中。

serialization_format: str, default = “pickle”

用于序列化的模块。可用选项为“pickle”和“cloudpickle”。请注意,非默认格式可能需要安装其他软依赖项。

返回:
如果 path 为 None - 内存中的序列化 self
如果 path 是文件位置 - 引用该文件的 ZipFile 对象
score(X, y) float[source]#

在 X 上根据真实标签评估预测标签的得分。

参数:
Xsktime 兼容的时间序列面板数据容器,Panel scitype 类型

用于评分预测标签的时间序列。

可以是 Panel scitype 的任何 mtype,例如

  • pd-multiindex: pd.DataFrame,列为变量,索引为 pd.MultiIndex,第一层为实例索引,第二层为时间索引

  • numpy3D: 3D np.array(任意维度,等长序列),形状为 [n_instances, n_dimensions, series_length]

  • 或任何其他支持的 Panel mtype

有关 mtypes 列表,请参阅 datatypes.SCITYPE_REGISTER

有关规范,请参阅 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多元或不等长序列的面板,详细信息请参阅标签参考

ysktime 兼容的表格数据容器,Table scitype 类型

1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions] 类标签,用于拟合。第 0 个索引对应于 X 中的实例索引。第 1 个索引(如果适用)对应于 X 中的多输出向量索引。支持的 sktime 类型:np.ndarray (1D, 2D)、pd.Series、pd.DataFrame

返回:
float,predict(X) 与 y 的准确率评分
set_config(**config_dict)[source]#

将配置标志设置为给定值。

参数:
config_dictdict

配置名称:配置值对的字典。有效的配置、值及其含义如下所示

displaystr,“diagram”(默认)或“text”

jupyter kernel 如何显示 self 的实例

  • “diagram” = html 框图表示

  • “text” = 字符串打印输出

print_changed_onlybool, default=True

打印 self 时是否仅列出自默认值不同的自参数 (False),或所有参数名称和值 (False)。不进行嵌套,即仅影响 self,而不影响组件评估器。

warningsstr,“on”(默认)或“off”

是否引发警告,仅影响 sktime 的警告

  • “on” = 将引发 sktime 的警告

  • “off” = 将不引发 sktime 的警告

backend:parallelstr,可选,default=”None”

用于广播/向量化时的并行化后端,以下之一

  • “None”:顺序执行循环,简单的列表推导

  • “loky”、“multiprocessing”和“threading”:使用 joblib.Parallel

  • “joblib”:自定义和第三方 joblib 后端,例如 spark

  • “dask”:使用 dask,需要环境中包含 dask

  • “ray”:使用 ray,需要环境中包含 ray

backend:parallel:paramsdict,可选,default={} (不传递参数)

作为配置传递给并行化后端的附加参数。有效键取决于 backend:parallel 的值

  • “None”:无附加参数,忽略 backend_params

  • “loky”、“multiprocessing”和“threading”:默认的 joblib 后端,可以传递 joblib.Parallel 的任何有效键,例如 n_jobs,除了 backend,它直接由 backend 控制。如果未传递 n_jobs,则默认为 -1,其他参数将使用 joblib 默认值。

  • “joblib”:自定义和第三方 joblib 后端,例如 spark。可以传递 joblib.Parallel 的任何有效键,例如 n_jobs,在这种情况下 backend 必须作为 backend_params 的一个键传递。如果未传递 n_jobs,则默认为 -1,其他参数将使用 joblib 默认值。

  • “dask”:可以传递 dask.compute 的任何有效键,例如 scheduler

  • “ray”:可以传递以下键

    • “ray_remote_args”:ray.init 的有效键字典

    • “shutdown_ray”:bool,default=True;False 可防止 ray 在并行化后

      关闭。

    • “logger_name”:str,default=”ray”;要使用的日志记录器名称。

    • “mute_warnings”:bool,default=False;如果为 True,则抑制警告

返回:
self对 self 的引用。

注意

改变对象状态,将 config_dict 中的配置复制到 self._config_dynamic。

set_params(**params)[source]#

设置此对象的参数。

该方法适用于简单的 skbase 对象以及复合对象。参数键字符串 <component>__<parameter> 可用于复合对象,即包含其他对象的对象,以访问组件 <component> 中的 <parameter>。不带 <component>__ 的字符串 <parameter> 也可以使用,如果这使得引用明确,例如,没有两个组件参数具有名称 <parameter>

参数:
**paramsdict

BaseObject 参数,键必须是 <component>__<parameter> 字符串。__ 后缀可以作为完整字符串的别名,如果在 get_params 键中是唯一的。

返回:
self对 self 的引用(参数设置后)
set_random_state(random_state=None, deep=True, self_policy='copy')[source]#

为 self 设置 random_state 伪随机种子参数。

通过 self.get_params 查找名为 random_state 的参数,并通过 set_params 将它们设置为从 random_state 导出的整数。这些整数通过 sample_dependent_seed 从链式哈希中采样,保证了有种子随机生成器的伪随机独立性。

根据 self_policy 适用于 self 中的 random_state 参数,且仅当 deep=True 时适用于其余组件对象。

注意:即使 self 没有 random_state 参数,或者组件中没有 random_state 参数,也会调用 set_params。因此,set_random_state 会重置任何 scikit-base 对象,即使是没有 random_state 参数的对象。

参数:
random_stateint、RandomState 实例或 None,default=None

伪随机数生成器,用于控制随机整数的生成。传入 int 可在多次函数调用中获得可重现的输出。

deepbool, default=True

是否在 skbase 对象值参数(即组件评估器)中设置随机状态。

  • 如果为 False,则仅设置 selfrandom_state 参数(如果存在)。

  • 如果为 True,则也会在组件对象中设置 random_state 参数。

self_policystr,{“copy”、“keep”、“new”} 之一,default=”copy”
  • “copy”:self.random_state 设置为输入的 random_state

  • “keep”:self.random_state 保持原样

  • “new”:self.random_state 设置为新的随机状态,

从输入的 random_state 导出,通常与它不同

返回:
self对 self 的引用
set_tags(**tag_dict)[source]#

将实例级别标签覆盖设置为给定值。

每个 scikit-base 兼容对象都有一个标签字典,用于存储关于对象的元数据。

标签是特定于实例 self 的键值对,它们是静态标志,在对象构建后不会更改。它们可用于元数据检查或控制对象的行为。

set_tags 将动态标签覆盖设置为 tag_dict 中指定的值,其中键是标签名称,字典值是要设置的标签值。

set_tags 方法只能在对象的 __init__ 方法中调用,在构建期间或通过 __init__ 构建后直接调用。

当前标签值可以通过 get_tagsget_tag 检查。

参数:
**tag_dictdict

标签名称:标签值对的字典。

返回:
Self

对 self 的引用。